亚洲国产aⅴ综合网一区_一本大道香蕉大道在日韩_黄片无码自慰在线看_国产精品视频九九_97超碰免费观看黄色片_免费一级特黄特色大片_欧式一级高清电影在线观看_国产三级在线网站_国产成人精品日本欧美动漫_免费视频播放一区二区无码

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業(yè)資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

99精品久久毛片a片潘金莲| 国产老头老妇女AAA片| 亚洲日韩第三十六页| 久久久亚洲精品高潮抽搐| 午夜精品视频在线看| 国产亚洲成a∨人片在线观嫩草| 日本巨大爆乳一级在线观看| 天天影视网网色色欲| 无码 视频在线观看| 美女午夜福利精品| 国产精品大屁股白浆aa| 自拍国语小视频在线播放 | 国产精品吹潮香蕉在线观看 | 校花高潮喷水视频| 亚洲a∨女人的天堂在线观看| 人人在线视频| 福利在线视频一区热舞| 欧美小说在线观看| 果冻视频传媒免费观看电影 | 蜜桃久久久久久免费观看 | 积积对积积的桶的过程| 8x8永久华人免费观看网址| 亚洲精品尤物yw在线影院| 色综合AV社区男人的天堂首页 | 天堂色妞丁香婷婷久久久| 色色色色亚洲| 扶着沙发后入上位骑乘| 午夜视频在线黄色女生视频| 国产欧美日韩免费| 久久亚州视频精品| 免费看黄色一级片| 亚洲无码精品色午夜果冻不卡| 秋霞伦理在线观看| 中文字幕人妻一区二区三| 免费一级α片在线观看欧美日韩在线一区二区 | www.亚洲成人免费| 中文字幕不卡精品视频在线 | 岛国精品在线播放| 国产黄色一级黄色片| 中国特黄特级毛片视频免费看 | 国产1区2区3区精品| α片毛片免费看| 久久精品麻豆韩国中文字幕 | 人人插人人草| 积积桶肤肤的免费软件大全一个 | 久久99热这里只有精品6国产| 国产手机版免费视频在线播放 | 成人午夜电影在线播放| 国产综合久久精品推荐| 五月婷婷青青草| 樱桃app网站下载污| 少妇被黑人到高潮喷日韩精品一区二区亚洲AV | 国产视频久久久久久久久| 国产激情精品重口味AV| 殴美一级A特黄| 永久免费播放成人在线视频| 欧美日韩国产一区视频大全| 欧美国产精品伦理一区| 四川老女人高潮大叫视频| 又爽又黄又刺激禁片免费100 | 揉女高中生的奶视频| 男女猛烈无遮拦免费视频| 丰满的少妇被猛烈进入白浆| 91区视频在线免费观看| 99精品视频在线观看免费蜜桃| 男无遮挡羞羞视频免费网站| 国产高清精品福利色噜噜| 成人h视频在线观看播放免费| 又长又大又爽caopor在线| 大陆三级裸体写真HD集| 就去操偷偷操狠狠操| 在线天堂新版最新版在线8 | 神雕猎艳之婬欲h全文阅读| 四虎在线免费观看av| 51亚洲精品午夜无码专区| 国产色欧美精品日韩在线| 免费国内精品久久久精彩| 能看亚洲AV的网站| 亚洲成色在线99精品亚洲| 久久狠狠中文字幕2017婷婷| 新婚少妇杨雨婷献身高官 | 97超人人澡高清碰碰国产| 国产精品不卡免费| 国产成人精品视频ⅤA秋霞影院| 一本久道久久综合丁香狠狠躁 | 在线观看免费福利视频网| 国产精品二区无码在线播放| 中字慕色网视频在线永久在线观看免费 | 老色鬼在线精品视频在线观| 大陆国产理论在线观看 | 国产精品另类激情久久久免费| 美女扒开腿让男生桶爽网站| aa免费完整版在线观看| 亚洲一区二区三区男人的天堂 | 久久婷五月综合| 午夜伦电影自拍殴美性爱| 亚洲免费无码在线| 精品免费久久久久久成人影院| 日韩精品久久久一二区| 欧美日韩免费高清一区色橹橹| 玉女心经2:阴阳合欢李丽珍| 一级国产黄片免费看| 精品自拍偷拍一区二区| 麻豆av免费在线观看| 亚洲欧洲自拍图片另类| 手机看片国产日韩精品| 久久久久亚洲AV无码永不卡| 欧美 亚洲 自拍 另类| 夜趣福利视频下载| swag国产剧情心理医生| 国产品精品久久久久中文| 国产自产视频在线观看香蕉| 伊人成人图片网| 国产AV天天5G天天爽| 10大最污软件不要钱| 亚洲国产一区二区在线观看阿娇 | 亚洲欧洲色网视频| 蜜桃最新网址在线亚洲精品| 国产999久久久久一区二区| 不卡日韩av在线播放| 日本一道免费dvd不卡专区| 巨大黑人极品video| 精品一区二区三区免费在线观看 | 精品综合欧美一区二区三区| 不卡日韩av在线播放| 日本巨大爆乳一级在线观看| 2018天天干天天拍| 最新激情av在线免费观看| 在线播放日韩一区| AV无码免费永久在线观看| 亚洲国产成人超?在线播放| 日本熟妇牲交视频全| 国产精品亚洲片在线观看麻豆| 国产精品成人av三级在线影院| 人妻少妇无码一区二区三区| 国产免费午夜一区二区视频无| 亚洲aⅤ日韩aⅤ无码自拍偷拍| 欧美ay亚洲ay日韩ay| 国产精品另类激情久久久免费| 精品久久久久中文字幕app| 成人免费免播放器视频| 欧美乱子伦一区二区三区| 欧美性猛交XXXXXⅩXX| 国产一级av又粗又大又| 搞机time免费的恶心软件下载| 欧美熟妇A片免费| 日韩三级视频影音播放| 999国内免费福利视频飘飘网| 久草最新在线观看网址| 国产精品日韩幕无码不卡| 色婷婷色综合缴情在线| 国产成人在线观看不卡| 国产亚洲精品a久久久久久a| 亚洲 欧洲 另类 春色| 91在线看片无码永久免费Aⅴ | 欧美一级片网址| 免费看成人国产一区二区| 一级做a爱无码性色永久免费| 极品无码国模在线观看桃密| 热99精品只视频有里面有| 国产中文字幕第一页| 欧美一区二区三区A片直播| 日本亚洲中文字幕久久久| 国产成人综合久久亚洲精品小说 | 辜莞允+无码+视频下载| 欧美日韩黄色网址| 久久综合精品五月丁香| 国产一区二区三区色噜噜喷水 | 国产又大又粗又长又爽视频| 九九热线精品视频16首页| 无码影音一区二区三区| 一级黄片欧美日韩| 溢奶1v2易遥笔趣阁| 亚洲中文字幕精品店| 欧美精品国产三级在线专区 | 国产a∨人人夜夜澡人人爽| 亚洲精品中文字幕无码乱线| 国产AV无码精品色| 亚洲成人福利导航| 亚洲Va中文字幕久久无码一区| 黃色片子在線觀看一區二區三區 | 热の无码综合 视频二区| 婷婷丁香五月天亚洲第一免费视频| 性短視頻在線觀看免費不卡流暢| 欧美高清视频视频性播放| 人人亚洲色图五月丁香| 精品国产三级A∨在线电影| 欧美不卡视频一区二区| 日韩在线精品亚洲| 久久国产精品人麻豆电影| 国产成人网在线视频导航| 琪琪电影院久久| 色噜噜精品一区二区三区在线观看 | 人妻久久久精品66系列| 无码免费熟女人妻快播| 99久久国产精品免费一区二区三区| 羞羞视频免费观看网站| xxxwww在线观看视频| 精品乱伦区一区二区三区| 欧美日韩国产精品综合色| 天天爽夜夜爱| 2023蓝奏云破解软件合集资料| japanese在线中文无码| 欧美大片午夜激一区 | 国产熟睡乱子伦午夜漫画| 久久麻豆精亚洲av| 久久久久黄色| 久久无码天堂伊人| 五月亚洲国产婷婷| 久久综合给久久狠狠97色| 国产性猛交╳xxx乱大交| www.这里只有精品| 久久精品麻豆韩国中文字幕| WWW国产精品人妻一二三区| 把腿张开再深点好爽宝贝动态图| 久久久伊人色综合A片无码 | 久久精品人人| 卡通动漫综合一区二区| 日韩精品中文高清一区| 丁香花五月天激情AV| 下载黄色一级片| 国产成人网在线视频导航| 欧美成人免费久久精品| 久久久一区二区人妻av| 久久精品欧美一区二区三不卡| 高清乱码一区二区三区 | 三级激情视频一区二区不卡| 久久婷五月综合| 亚洲一级美女免费视频| 欧美一区二区三区婷婷五月老人| 成人av免费在线看| 欧美一区二区日本国产激情| 久久久久亚洲AV成人无码国产| 在线精品亚洲国产| 免费看男女做好爽好硬视频| HEYZO无码综合国产精品227 | 亚洲中文无码成人影院在线播放 | 日韩色图无码专区色图| 日韩精品区一区二区三区激情| 色婷婷丁香中文字幕| 公车全黄h全肉短篇公车之狼| 学校走廊抽插老师的肉臀内射| 亚州欧美综合一区二区| 欧美日韩免费高清一区色橹橹| 久久视热频国只有精品| 国产无码免费视频网址| 国产亚洲欧洲综合久久婷婷| A级一级毛片大全视频| 亚洲无码高清大片在线观看| 97se亚洲国产综合| 久久精品国产日韩不卡| 亚洲无码男人天堂。| 成人做爰100部片是合法的吗| h片在线观看视频不卡| 高级私人会所人妻互换| 国产精品美女久久久亚洲69色| 爱丫爱丫在线影院| 国内破女处破苞视频hd| 人妻久久久久久区二| 好妈妈在线观看完整版| 9久热re在线精品视频| 亚洲欧亚洲看片在线观看看| 欧美三级在观线看| 精品无码一区二区三区AⅤ免费| 蹂躏绝色校花的呻吟视频| 亚洲爽爽在线在线| 最近国语视频免费观看在线播放| 天天看精品无码一区二区三区| 91人人澡人人爽人人精品 | 7777日本精油按摩| 亚洲 另类 日韩 功本道| 在线看国产不卡无码视频| 国产亚洲av美女网站| 欧美一级欧美三级在线观看日韩精品电影一区 | 亚洲AⅤ优女A∨综合久久久| 日日狠狠久久偷偷色按摩| 麻豆亚洲一区在线观看免费人成视频色| 亚洲精品久久久久婷婷午夜福利| 91部亚洲精品费观看电影| 亚洲美女高潮久久久| 91香蕉短视频在线观看免费最新| 97热这里只有精品国产| 更新日韩欧美特级黄片免费播放| 国产精品理论片在线播放春色 | 最近日韩av电影| 爆乳喷水免费无ma区手机免费观看| 精品一区二区三区无码视频| 爆乳喷水免费无ma区手机免费观看| 久久性色a免费| 久久亚洲这里只有精品| 日韩高清国产精品一区二区| 欧美日韩免费高清一区色橹橹| av午夜在线观看| 欧美国产99精品色综合久久成人| 久久久久久国产精品日本| 国产性三级视频在线观看| 亚洲AV秘无码久久精品| 国产成人av在线亚洲天堂在线观看| 久久久一级免费毛片| 欧美一级 片91内射视正片| 亚洲日本乱码中文字幕| 欧美高清视频视频性播放| 在线免费观看国产h视频| 五月天婷婷免费视频| 久久精品麻豆韩国中文字幕| 欧美牲交a欧美牲交aⅴ免费看| 久久综合精品无码av一区二区三区 | 欧洲亚洲第二页| 私拍av免费在线观看| 东京热中文aⅴ专区| 亚洲欧洲国产码视频专区| 亚洲人妻免费视屏| 久久这里只有精品视频6| 无码少妇裸体做爰A片免费看| 欧美一区二区视频在线| 毛片亚洲一区二区| 国产日韩欧美一区二区三区综合| 再深点灬舒服灬受不了了视频男男| 91香蕉视频最新网址| 欧美国产亚洲日韩第一页| 久久综合精品五月丁香| 成人午夜影视亚洲精品| 日本高清不卡电影一区二区| 精品少妇专区偷人| 亚洲综合色在线社区| 不卡不卡不卡不卡在线不卡| 成人国产精品一区二区在线观看| 免费成年人视频国产| 国产免费凹凸—AV视觉盛宴| 国产福利一区二区精品在线| 一本久道久久综合丁香狠狠躁| 亚洲美女高潮久久久| 欧美ay亚洲ay日韩ay| 一级黄色片久久国产片| 日韩国产高清无码理论| 婷婷国产av精品网站| 不卡的黄片免费看| 黄色三级网站在线播放| 在线观看视频极品粉嫩福利| 国产久一视频在线观看app| 国产日韩人av在线播放| 亚洲av吞精久久久久久| 久久久久国产亚洲一区| 最新精品国偷自产线| 国产成人精品日本亚洲直国ll| 娇妻宾馆被三根粗大的夹击| 阿v天堂2017在线观看| 国产一区二区三区色噜噜喷水| 性欧美野外激情| 免费v?国产高清大片在线| 国产一级一极性活片| 东北女人毛多水多牲交视频| 国产大片特黄高清在线观看| 国产男女无遮挡猛进猛| 亚洲精品一级二级三级| 国产激情久久久久影院老| 国产精品午夜免费视频| 精品亚洲成在人线AⅤ无码| 国产15p自拍第一页| 日韩精品第一页色欲AV| 妇有湿意网站在线观看视频| 床戏必须真做(高h)| 国产成人综合亚洲专| 老司机免费福利视频无毒午夜| 国产黄色免费二级片i| 男女上下猛烈动态图午夜| 免费v?国产高清大片在线| 久久亚洲道色宗和久久| 日韩成人一级黄片| 亚洲精品久久久久婷婷午夜福利| 99re只有精品在线6| 中文字幕免费无码专区| 亚洲欧美另类精品日韩爱如潮水社区| 亚洲成人动漫在线免费观看| 国产精品不卡免费| 国产女人激烈高潮抽搐免费观看| 老鸭窝一级毛片成人网站| 欧美成人精品三级网站黑人| 国产a∨人人夜夜澡人人爽| 特级精品免费观看| 高级会所口爆吞精在线观看| 粉色视频免费高清下载观看| 色五月激情五月| 做天天爱夜夜爽| 国产成人妖精视频在线| 色欲av综合av在线av老妇人| 美女站立式x0x0又黄动态图| 啪啪91免费视频| 无遮挡男女激烈免费动态图| 欧美日韩国产一级一顶级| 日韩无码毛片视频| 在线精品亚洲国产| 日韩精品区一区二区三区| se94se在线亚洲视频| 成人亚洲欧美在线电影www色| 国产免费午夜一区二区视频无| 國產盜攝xxxx視頻xxxx| 放在里面睡觉的睡姿有哪些| 欧美激情五月亚洲经典一在线| 在线观看中文字幕网站| 亚洲18无码AV综合一区二区三免费精品 | 婷婷久久綜合九色综合| 亚洲av无码不卡私人影院| 日本69日视频在线观看| 久久精品麻豆韩国中文字幕 | 97超碰中文字幕精品在线一区| 欧美曰韩精品三级在线观看 | 肌肌桶肤肤软件免费下载| 国产又猛又黄又爽密臂Av| 2024亚洲偷偷的一区二区| 欧美亚洲免费成年人影院| 久久精品福利国产| 亚洲性爱图区欧美a级黄色| 国内外一级黄片免费看| 国产AV无码专区亚洲AⅤ中文| 成人片黄色大片| 亚洲欧洲av性色在线观看| 男女一边摸一边做爽爽爽的免费| 国产在线成人精品啪| 宠溺无边1V3双胞胎| 久久综合给久久狠狠97色| 精选午夜精品福利视频导航| 女人张开腿无遮无挡免费视频| 国产色哟哟哟| 国产尤物福利在线| 黄网站色成年片大免费高清| 91宅男午夜视频| 亚洲av黄色精品一区| 久久精品中文字幕久久久| 一级做a爰片在线观看| 亚洲bt欧美bt中文字幕app| 好男人影视在线www官网| 亚洲成人免费久久| 一区二区三区春色| 日本亚洲欧美在线视频免费看| 6080yyy午夜理伦三级手机版| 差差差30很疼的视频软件| 久久亚洲精品无码Av香大香| 波多野吉衣美乳人妻| 国产se05ee短视频| 亚洲色无码专区在线观看第| 97成人A∨中文字幕视频在线观看| 亚洲伊人久久大香线蕉在观| 18禁男男H黄动漫啪啪| 殴美一级A特黄| 国产av级不卡毛片| 韩国理论福利片午夜| 夜夜嗨AⅤ免费视频| 精品无码人妻一区二区免费AV| 亚洲午夜性爱免费视频| 新婚之夜玩弄人妻系列| 日韩 精品 一区 私房| 成人午夜电影在线播放| 天堂8最新版中文在线| 免费级无码婬片AAAAA毛片| 国产成人羞羞电影网站在线观看| a级片无码在线免费看| 无码免费熟女人妻快播| 亚洲最大黄色在线视频| 成在线人视频免费视频网站| 中文字幕无码白丝袜| 十八禁免费无码无遮挡黄国产丝袜免费精品一区二区 | 激情久久综合激情久久GiF| 中文字幕亚洲精品日韩av| 福利视频导航一区二区| 波多野结衣在线观看免费区| fc2ppv视频在线观看| 一级做a爱无码性色永久免费| 青柠视频手机在线高清观看 | 伊香蕉在线播放少妇| 国产精品无码剧情?V| 亚洲欧美日韩在线精品一区二区 | 亚洲欧美综合在线区| 免费黄片视频免费观看| 国产成人无码精品色欲天香| 撕开她的裙子手指滑进她| 中文字幕人妻熟女人妻| 在线观看视频极品粉嫩福利| 老司机深夜福利视频91| 国产激情一级毛片久久久ssyy| 三上悠亚禁欲30天在线播放| 狼友色成人网在线播放视频下载| 亚洲国产精品视频中文字幕| 日韩无码视频三区| 国产成熟女人性满足视频| 久久精品国产日韩不卡| 99久久精品免费福利看国产| 青草国产超碰人人添人人碱| 华人在线亚洲欧美精品| 日韩中文字幕在线六区| 国产熟女一区二区三区视频| 免费无码一区二区三区A片蜜臀| 欧美性a视频在线观看| 一区二区三区国产精品视频| 日韩日韩日韩手机看片自拍| 伊人成人亚洲视频| 久久97超碰色中文字幕东京| 亚洲精品一区二区国产精品| 国产在线一区尤物高清| 日本三级片在线视频| 日韩精选无码不卡| 天堂8最新版中文在线| 国产高清一区二区二三区| 国产乱A一区二区三区| 日操夜操五月天| 日本东京热一区| 亚洲AV乱码一区二区三区www| 日本国产免费一区不卡在线| 亚洲国产精品成人久久综合网| 中字慕色网视频在线永久在线观看免费| 缘分五月在线视频播放| 国产精品视频今日黑料| 2024精品国产品免费观看| 免费无遮挡在线观看网站| 五月婷婷花综合精品| 欧美日韩黄色网址| 欧美激情五月亚洲经典一在线| 免费观看国产又色又爽视频| 波多野结衣在线观看免费区 | 免费网站看v片免费| 久久久久亚洲AV成人无码国产| 色天天综合色天天久久| 国产黄片Ha一区二区三区| 麻豆高跟丝袜自慰| 国产热の有码热の无码视频| 99精品人人做人人综合试看 | gogo全球高清大尺度视频| 日本一区二区三区四区电影| 蜜芽忘忧草老狼二区大豆行情| 性伦片美国刺激片在线观看| 91日韩在线视频一区二区三区| 91日韩在线视频一区二区三区| 18禁男男H黄动漫啪啪| 综合欧美中文影视| 黄动漫网站免费在线看| 大香伊蕉国产播放| 国产视频福利在线播放| 在线观看精品欧美一区| 亚洲Va中文字幕久久无码一区| 黑人尾随强伦姧人妻爽翻天| 亚洲国产中文成人手机在线 | 丁香狠狠色婷婷久久综合| 国产又黄又爽又无遮挡的视频| 無碼av大香線蕉伊人久久| 国产成人av电影在线观看第二页| 樱花草在线社区www中国中文| 少妇高校长白结全无删减视频| 大象蕉视频在线观看75| 国产91精品久久久久久| 亚洲最大的中文字幕| 国产亚洲?v人片在线观看成人| 久久国产免费高清视频| 91香蕉视频最新网址| 久久国产99欧美| 91丰满人妻无码AⅤ一区二区塚本| 国产又粗又大又硬又长免费视频| 囯产精品视频一区二区三区乱码| 风楼阁全国同城| 日本高清中文字幕这里只有精品| 人人澡人人妻人人人爽| 久久国产精品免费看片| 国产精品色是免费视频| 女18毛片亚洲一级毛片真人| 日本久久高清一区二区三区| 国产极品粉嫩小泬内射正在播放 | 亚洲黄色在线播放视频。| 国产明星福利资源在线| 最近日韩av电影| a级片无码在线免费看| 色窝窝色蝌蚪在线视频网站免费看| 妺窝人体色www视频| 女生扒开下面让男人捅 | 末成年小嫩xB性AV| 国产一级性爱 亚洲视频一区| 国产精品欧美久久久久| 亚洲永久精品ww3344| 免费国产精品自产拍| 中字慕色网视频在线永久在线观看免费| 国产日产欧产精品精乱子| 成人羞羞的电影在线观看| 中文无码精品一区二区三区在线| 亚洲无码影院能看性爱视频的网站 | 欧美日韩免费高清一区色橹橹| 在线一区二区网站永久不卡| 日韩综合成人免费视频| 亚洲欧洲自拍图片另类| 中文字幕亚洲一区二区在线| 麻豆丝袜脚交在线播放| 欧美日韩中文字幕手机在线视频 | 国产女人爽到高潮久久久| 亚洲综合色在线社区| 人妻 清高 无码 中文字幕软件| 午夜激情毛片在线播放视频免费| 调教女人呻吟喷水视频了| 国产成人一区在线播放| 人妻无码aⅴ一区二区三在线| 两个人2018韩国伦理片| 视频一区二区日韩| 国产成人8x精品一区二区| 性色Av一区二区人妻| 欧美亚洲日韩第四十六页| 国产成人福利资源在线| 国产精品1区2区3区欧美| 香蕉视频app免费下载| 亚洲精品一级在线播放| 国产一级爽爽爽爽爽影院| 免费国产激情视频| 永久电影一级在线观看| 日韩中文字幕无码一区二区三区 | 亚洲av无码99久久久国精| 99久久国产综合精品成人| 你懂的网站在线视频| 国产乱人伦偷精品视频观看| 视频一区二区日韩| www.这里只有精品| 午夜理论在线观看 | 亚洲av无码不卡私人影院| 两个人2018韩国伦理片| 国产手机成人不卡视频在线观看 | AAA级大胆免费人体毛片| 手机福利视频一区二区| 激情无码七区| 欧美日韩中文国产一区浪潮| 中文字幕日韩精品乐乐影院| 又爽又黄又无遮挡的视频国产| 国产乱人伦偷精品视频观看| 国产无码乱伦视频| 毛片免费无码视频| 中文字幕欧美日韩熟女| 日韩激情影院莉莉| 久久伊人午夜寂寞影院| 又长又硬又粗又硬免费视频| 26uuu欧美亚洲另类| 一级特爽高潮AA毛| 91麻豆国产视频专区| 永久无码AⅤ免费网站| 阿v天堂2017在线观看| 另类小说色综合| 亚洲综合无码在线观看| 西西大胆午夜人体视频无码 | 国产成人免费高清激情视频| 少妇欧美中文久久| a级高清特黄色片| 午夜免费福利伦理电影| 优播AV无码一区| 国产福利在线看| 成人精品亚洲国产| 国外三级视频在线观看| 久久精品久久香蕉\| 最好看免费观看高清视频动漫| 朋友年轻的继坶6| 青青色在线观看视频| 国产精品999久久久一区二区视频 来吧综合网五月天新乱伦 | 免费国产精品V斤在线观看| 欧美日本一级特黄大片床片a | 亚洲a∨女人的天堂在线观看| 凹凸人妻人人澡人人添| 2020国产一级a在线观看| 东京热无码国产精品老妇人| 玉米影视黄APP入口| 久久一日本道色综合久| 精品成人福利视频导航| 国产美女高潮抽搐流白浆免费全集| Av日韩午夜一本电影| 丁香五月深爱激情亚洲一区| 了解最新最新国产网站| 积积桶肤肤的免费软件大全一个| 亚洲av无码黄在线观看| 俺也去俺也去电影网| 国产综合日本影视| 久久综合亚洲色1080p| 私拍av免费在线观看| 无码爱爱视频免费| 成年A毛片免费观看| 永久无码AⅤ免费网站| 91部亚洲精品费观看电影| 中文字幕一区二区在线视频关键 | 国产se05ee短视频| aaa一级毛片免费| 亚洲色图四房播播| 歐美成人精品三級網站| 美日中精品无码乱伦一区二区| 10大黄色软件合集| 欧美一级特色aaaa| 欧美高清精品一区二区不卡| 欧美人与动人物在线 | 精品一区二区免费在线观看视频| 在线免费观看欧美一级| 91精品无码人妻天堂| 97超爽成人免费视频在线播放| 粉嫩国产白浆在线播放| 自拍偷自拍亚洲精品影院 | 在线观看黄色网一级性爱| 黄色毛片一级国产| 操美女视频免费看无需下载网站| 日韩成人免费视频| 日本一区二区视频在线观看狼人| 中文字幕无码高清在线| 男女啪啪猛烈免费网站| 日韩三级视频影音播放| 野花社区www视频日本| 在线观看禁无码精品| 国产精品二区无码在线播放| 欧美日韩国产综合新一区| 欧美日韩高清交日韩主播在线观看| 久久精品久久精品久久39| 女女在线免费一区二区| 欧美精品亚洲精品日韩专区久久久五月 | 人妻熟妇与黑人HDXⅩXX| 欧美日韩国产一区视频大全| 亚洲av黄色精品一区| 日韩中文字幕欧美一区二区| H成人无码视频在线观看| 黄在线免费欧美黄| 超碰97人人爽人人爱| 欧美老妇多毛在线| 亚洲性色av一区二区三区银都上场美妙故事鲁啊鲁充满音乐! | 久久性爱视频网站欧洲精品| 免费欧美日韩国产电影| 丁香狠狠色婷婷久久综合| 日本黄r色成人网站免费| 久久午夜福利国产| 久久99国产综合精品三级婷婷| 国产偷2018在线观看午夜| 成人欧美一区二区三区视频网页| 免费网站看v片免费| A级毛片视频免费观看不卡| 久久人人97超碰人人澡爱香蕉| AA免费毛片视频| 无码在线视频亚洲色图| 色婷婷色综合缴情在线| av片在线在哪看| 欧美曰韩精品三级在线观看| 日日夜夜欧美| 日韩欧美中文字幕无乱码| 亚洲乱码中文字幕15页| 6080yyy午夜理伦三级手机版| 亞洲成在人線AV| 亚洲欧美激情综合区久久| 98在線視頻嚕嚕嚕國產| 99精品国产一级a毛久久久一级a做免费视频| 免费看强人物漫软件下载APP| 视频一区亚洲欧美校园| 无码精品国产v?在线观看| 差差的很疼30分钟视频无掩盖| 午夜精品成人一区二区三区 | 日韩精品免费一区在线观看| 亚洲中午久久久久久国产精品 | 小编在这里为大家带来看91欧美在线 | 大乳晕美女挤奶水福利视频| 精品人妻无码中文字幕| av无码a一在线观看| 99精品视频精品免费| 亚洲国产日韩在线a乱码| 女人张开腿让男人桶的视频| 日产高清一区二区三区2022| 国产麻豆精品电影| 亚洲自偷自偷图片自拍| 人妻少妇中出中文字幕在线| 丰满岳乱妇一区二区三区电影| 超碰97人人爽人人爱| 日韩av成人在线| 国产对白在线正在播放第一页| 成人熟女视频一区二区三区| 特级aaaaaaaaa毛片免费视频| 国产无码网站| 国产精品制服自慰喷水综合久久久 | 日韩精品自拍视频1页在线观看网站 | 国产亚洲精品久久久闺蜜| Av亚洲精品毛片av| 欧美成人?天堂片在线观看 | 爱暴露户外露出精品合集| 国产成人三级电影在线观看| 亚洲免费人成网站在线观看| 8x8永久华人免费观看网址| 免费人成精品在线视频| 被干视频免费无码高清| 国产精品三级黄色| 午夜精品成人一区二区三区 | 国产99欧美在线播放视频 | 污片免费网站| 老色鬼在线精品视频在线观| DJ国产一卡二卡三卡| 国产漂亮美美女在线播放| 99久久精品国产99久久6| 亚洲成av人片无码不卡葡京| 中国久久一级黄色大片| 国内熟妇人妻色无码视频在线| 综合久久亚洲| COM香草视频WWW免费观看| 五月天视频在线观看免费国产| 欧美自拍另类欧美综合图| 国产精品久久久久久日日游香| 亚洲精品呦女| 国产精品高潮呻吟久久无码| 成人漫画av在线免费| 爆乳喷水免费无ma区手机免费观看| 在线播放免费人成日韩视| 亚洲国产天堂久久综合图区| 黄片视频一脱国产| 精品国产亚洲大片| 色AV天堂资源站| 亚洲aⅤ日韩aⅤ无码自拍偷拍| chinese国产高端人妖| 亚洲白嫩在线观看| 小荡货奶真大水真多紧视频 | 亚洲精品呦女| 寂寞熟妇风间ゆみ中文| 精品日韩熟女视频| 羞羞色院91网站| 2021精品国产无码在线不卡| 韩日三级免费电影| 18国产精品成久久久久三级| 美女黄a免费网站在线观看 | 韩国三级夫妇换交换性完整版 | 小荡货奶真大水真多紧视频| 2024亚洲偷偷的一区二区| 91亚洲精华国产精| 欧美日韩中文字幕手机在线视频| 伊人网免费视频| 欧洲手机在线影院全集完整版免费 | 亚洲综合缴婷婷六月丁| 精品一区二区免费在线观看视频| 黄色片视频网站免费| 精品无人区一码卡二卡三| 九九视频免费在线观看| 免费国产精品社区| 中文字幕日韩精品乐乐影院| 五月天亚洲综合小说网| 中文字幕日韩精品乐乐影院| 好吊妞国产日韩欧美在线观看| 欧美成人精品第一区图片| 日本免费成人综合| 百合高潮h跪趴扩张调教喷水| 92午夜福利在线少妇| 日韩午夜福利麻豆?v无码精品一区| 国产成人精品人人2020视频| 成年人视频在线免费| 东京热无码国产精品老妇人 | 欧美黄片午夜影院在线观看 | 日韩区一区二区三区区四| 女教师波多野结衣与黑人| 两性色午夜视频自由成熟的性| 午夜亚洲精品第一区| 岛国精品在线播放| 久久久久国产亚洲一区| 一级做α爱**毛片| a级毛片免费视频永久免费| 少妇亚洲无码精品| 日操夜操五月天| 无码免费熟女人妻快播| 午夜男女爽爽影院免费观看视频| 一級黃色片在線觀看| 国产激情MV无码一级毛片| 国产乱来乱子精品视频| 无码精品国产一区免费| 亚洲成人福利导航| 国产系列视频一区黄色网欧美久久久 | 亚洲AⅤ片不卡无码天堂| 在线观看中文字幕网站| 日韩中文字幕在线六区| 日本人成在线播放免费不卡| 欧美三级在观线看| 亚洲高清无码为满十八岁勿进入| 国产免费凹凸—AV视觉盛宴| 99久久最新网址| 亚洲成人福利导航| 午夜精品v无码大片在线观看| 国产亚洲欧洲综合久久婷婷| 1024手机在线人妻视频你懂的| 新婚91人妻无码精品一区二区毛片 | 国内偷拍美女视频一区| 欧美三级韩国三级日本| 在线观看播放国产日韩| 91激情国产欧美| 成人片黄色大片| 亚洲一级在线观看视频| 亚洲成A人片在线观看无码下载 | 粉嫩呻吟福利一区二区| 欧美午夜自慰精品一区二区三区| 国产一区二区不卡黄色电影| 亚洲区国产精品高清| 把我绑在床头虐奶头| 女人张开腿让男人桶的视频| 特黄特级特爽视频播放| 亚洲国产一区二区?毛片| 亚洲第一精品9| 国产精品福利免费在线| 亚洲永久精品ww3344| 日韩 国产 中文 综合网| 男女做羞羞猛烈免费网站| 日本久久亚洲高清| 国产在线成人精品啪| 色天天综合色天天久久| 813国产手机视频大全| 亚洲永久精品91香蕉| 国产精品樱桃视频免费接口| 国产高清av在线免费观看一区二区| 国产成人网在线视频导航| 激情无码七区| 欧美日国产综合在线视频| 最近最新2018中文字幕电影| 成人国产精品一区二区在线观看| 亚洲成女人综合图区| 瑜伽做爰A片在线播HD| 三级亚洲免费综合| 亚洲欧洲av性色在线观看| 中出无码在线观看高清| 亚洲国内欧美一区二区| 午夜福利视频色一区二区| 26uuu欧美亚洲另类| 无遮无挡三级动态图| 国产精品久久91福利| 手札国产视频福利永久| 综合激情国产麻豆专区| 久草福利资源首页| 小荡货奶真大水真多紧视频| 久久久噜噜噜精品福利| 在线国产69自拍视频| 牛牛天天人人综合影院| 正在播放国产一区二区三区| 婷婷国产av精品网站| 国产精品大屁股白浆aa| 成人精品亚洲国产| 东北女人毛多水多牲交视频| 日韩黄色毛片| 精品自拍偷拍一区二区| 男女上下猛烈动态图午夜| 2023蓝奏云破解软件合集资料| 欧美曰韩精品三级在线观看| 国产精品美女久久久免费日本中文字幕在线2020 | 日本三级和搜子同居的日子2 | 一区三区在线专区在线| 91麻豆产精品久久久久久夏晴子| 蜜臀Av麻豆人妻| 少妇被粗大的挺进69影院| 98国产成人综合久久精品| 日韩十国产十欧美| 国产大片特黄高清在线观看| 中国一级特黄真人毛片免费看| 成人一区二区三区高清视频| 一级黄片一级毛片一级黄片| 天天综合天堂在线视频| 国产精品自拍视频一区| 亚洲中文无码不卡视频| 亚洲少妇自慰在线观看| 美女扒开腿让男生桶爽网站| 福利在线视频一区热舞| (凹凸18+)国产日韩AV在线播放| 国产AV无码精品色| 毛片高清无码| 特级做a爰毛片免费看一区| 久久视热频国只有精品| 久久午夜青青草原影院| 亚洲天堂无码乱码在线观看| 荔枝成人免费视频观看| 四虎在线免费观看av| 91九色ts国产另类人妖| 国产精品猛烈视频| 视频在线观看一区二区三区| 国产欧美二级三级| 欧美精品福利视频一区午夜成人| 91免费视视频在线观看婷婷激情网站| 欧美理论精品一区二区三区| 国产色欧美精品日韩在线| 脱了美女内裤猛烈进入| 色综合久久中文色婷婷| 欧美一级黃色A片免费看蜜桃熟了| 欧美自拍另类欧美综合图| 无码在线观看中文免费| 亚洲人成网址| 99视频免费观看| 伊人色综合网| 久久亚州视频精品| 亚洲日韩精品无码看片久久| 两个人2018韩国伦理片| 無碼av大香線蕉伊人久久| 尤物网站在线观看的直播内容| 调教女人呻吟喷水视频了| 国产精品婷婷五月久久久久| 香蕉视频污免费观看| 巨大黑人极品video| 中文字幕欧美日韩熟女| 丁香五月天国产第一页最新免费 | 3atv002国产在线观看| 欧美日韩福利电影一区| 午夜大片在线观看视频| 能在手机看的不卡av| 美女搞激情无遮挡免费视频网站| 亚洲精品国产婷婷久久| 亚洲永久精品线看线路| 亚洲v视频日韩一区二区在线| 亚洲欧美日韩黄片| 免费一级aα无码看片| HEYZO无码综合国产精品227| 国产精品无码永久免费不卡久久国产精品电影 | 国产破处视频在线观看| 亚洲国产综合一区无码高清| 手玩护士睡老师勾搭女下属| 午夜福利视频色一区二区| 特黄α又粗又大又爽A| 国产日韩欧美一区二区三区综合| 波多野结衣在线免费视频| 欧洲精品综合亚洲| 国产一卡一卡三卡乱码| 久久久久黄色| 永久免费无码无卡顿a片| 三人成全免费观看电视剧高清| 一级a理论片视频在线| 成人一区二区三区高清视频| 在线观看黄色网一级性爱| 亚洲国产精品99页| 午夜毛片福利精品国产| 国产成人亚洲综合视频 | 青青草国产一区99| 小猪视频APP下载汅| 免费观看国产又色又爽视频| 自拍偷自拍亚洲精品影院| 新婚之夜玩弄人妻系列| 偷偷要偷偷鲁影院| 久久精品一本视频| 久久综合久久中文字幕高清| 亚洲六月丁香色婷婷综合久久 | 99精品视频精品免费| 日本A级乱子色网视频| 国产a∨人人夜夜澡人人爽| 999国内精品视频在线看免费| 日韩成人免费视频| 97超碰在线播放中文| 国产亚洲天堂无码电影| 把女人弄特爽黄A大片| 午夜剧场18岁免进| 亚洲三级毛片午夜免费观看| 久久久久国产亚洲一区| 黄瓜视频网址在线下载| 日韩 国产 中文 综合网| 天天看精品无码一区二区三区 | 久久综合精品五月丁香| 亚洲国产内射精品喷| 美女被强行扒开双腿被桶屁股| 精品亚洲成在人线AⅤ无码| 亚洲bt欧美bt中文字幕app| chinese国产高端人妖| 亚洲欧亚洲看片在线观看看| 好男人视频在线观看免费视频 | 37p粉嫩大胆色噜噜噜| 成人av麻豆久久| 亚洲性虎AV导航| 国产精品亚洲二三区在线观看| 脱了美女内裤猛烈进入| 裸模被摄影师无套进入| 韩国三级片网址窝窝影院| 日韩毛片免费看美日韩毛片| 大香伊蕉在人线国产91视频| 福利小视频在线播放| 欧美网站在线播放| 久久9精品国产亚洲av| 草莓app深夜释放自己| 中文字幕亚洲自拍亚洲v在线| 久久国产精品一区三区| 少妇亚洲无码精品| 天堂在线8网站色| 日本A级乱子色网视频| 一级国产黄片免费看| 911国产在线观看无码专区| 天天综合天堂在线视频| AV手机天堂在线| 日本禁播大尺度电影| 国产日韩在线视看高清视频手机| 精品亚洲成在人线AⅤ无码| 男女啪啪猛烈免费网站| 狠狠躁日日躁夜夜躁a片小说按摩| 医生把我弄高潮十几次| 国产精品美女久久久免费日本中文字幕在线2020 | 国产精品久久久久影视不卡| 亚洲三级无码精品| 亚洲加勒比中文字幕无码| 色综合AV社区男人的天堂首页| 国产第一区第五区| 98国产成人综合久久精品| 免费在线观看高清电影热播电视| 亚洲永久精品线看线路| 欧美一区二区三区色哟哟| 亚洲免费无码在线| 无码av中文一区二区三区am| 国产美女裸体爆乳无遮挡在线观看 | 91在线国产在线视频| 日操夜操五月天| 亚洲国产砖一线二线视频| 国产激爽大片高清在线观看| 青青久久国产成人免费网站| 九九视频免费在线观看| 精品国产av一二三区| 在线观看综合精品自拍| 久操精品视频| 亚洲精品视频成人国产| 妇有湿意网站在线观看视频| 日韩欧美精品区二区| 亚洲狠狠久久综合一区7777| 国产精品熟女一区二区| 亚洲国产精品一区二区第一| 国产中文天堂最新版在线| 榴莲视频污版| 欧美日韩中文国产一区浪潮| 欧洲综合国产在线| 成人电影国产a毛片| 大白屁股缝里浓黑的毛| 美女楼主别让男的用鸡巴操| 黄色视频国产免费观看视频| 97超爽成人免费视频在线播放 | 一区二区三区亚洲免费视视频| 国产乱码欧美激情| 久久亚洲a∨无码精品色午夜| 国产欧美皮裤丝袜在线| 亚洲高清无码为满十八岁勿进入| 老汉色老汉首页a亚洲| 国产第一区第五区| 校花高潮喷水视频| 精品久久亚洲中文无码日韩| 国产激情久久久久影院蜜桃AV| 蜜臀Av麻豆人妻| 一级真人片无毒不卡直接观看| 成人无码区免费a∨| 天天草天天爽| 黄片小视频久久| 亚洲免费无码在线| 永久av网址在线观看| 欧美日本在线一区二区三区| 午夜福利视频色一区二区| 亚洲精品尤物yw在线影院| 女人与公拘交酡ZOZO日韩| 欧美一级片网址| 一本大道av伊人久久综合蜜芽| 日本毛多水多做受视频| 亚洲欧美激情综合区久久| 在线观看的网站| a毛片完整版高清中文字幕| av成人国产精品久久| 色婷婷色综合缴情在线| 性色av蜜臀av人妻无码| 午夜福利综合视频| 9978九九热国产精品| 国产特黄级AAAAA片免费| 亚洲区欧美区无码区自拍区| 成人18视频在线观看| 久久人人97超碰人人澡爱香蕉 | 18禁止裸身美女无内衣| 1024视频色版在线观看| 国产精品露脸在线观看| 久久久久久亚洲精品人妻少妇| 国产乱人伦偷精品视频观看| 国产寡妇淫乱a毛片视频| 成人永久免费视频网站在线观看| 无码精品一区二区三区四| 国产精品二区无码在线播放| 欧美亚洲日产国产大全| av男人的天堂一区二区| 國產劇情無碼網在線觀看| 女人下面被添视频免费看| 国产成人精品日本亚洲视频| 国产精品拍天天在线强奸| 久久精品人妻一区二| 999久久精品免费看国产一区二区三区| 好男人视频在线观看免费视频 | 97精品无码人妻视频| 久久精品国产精品亚洲红杏| 内衣办公室无删减完整版| 亚洲aⅴ无码片一区二区三区不卡 在线免费观看国产h视频 | 亚洲成人动漫在线免费观看| 日韩精品成人片在线观看一区 | 成人夜间福利影院捆绑| 欧美在线中文91| 国产精品高清久久久999| 日产高清精品无码av| 亚洲第一无码影院| 色欲色综合久久久久网站| 丝瓜视频在线观看免费| 久久人人妻人人澡人人爽香蕉| 久久99久久99精品免国产成人精品综合网站 | 亚洲精品视频网站在线观看| 中文无码精品一区二区三区在线 | 亚洲久久无码福利专区| 操美女视频免费看无需下载网站| 欧美美妇XXX一区二区三区四区 | 歐美人與動人物牲交免費觀看| 国产精品日产精品久久| 黄大片视频在线观看| 视频一区精品自拍亚洲不卡 | 久久综合国产综合欧美综合| 亚洲成A人片在线观看无码下载| 可以在线观看黄色手机视频的网址| 久久综合欧美精品| 狠狠操人人操| 日韩精品区一区二区三区| 亚洲AV无码之国产精品网址| 大香伊蕉国产播放| 国产51自产区在线| 国产在线观看叼嘿视频| 日本最新中文免费一区二区| 国产福利激情影院| 国产精品熟女一区二区| 18禁止裸身美女无内衣| 国产人妻777人伦精品hd| 狠狠操夜夜操777| 国产无码网站| 1024视频色版在线观看| 最新亚洲国产精品嫩草影院在| 欧美一级特黄免费大片| 超碰人人少妇爽澡性色浪潮a| 牛牛天天人人综合影院| 三级无码在线| 开心五月婷婷欧美| 99久久精品费精品国中文字幕 制服 亚洲 另类| 成人黄色av片在线观看| 精品久久一区二区不卡免费视频| 美女扒开尿口秘喷牛奶软件下载| 182tv免费视视频线路一二三| 亚洲免费人成网站在线观看 | 中文字幕一区二区在线视频关键| 午夜精品视频在线看| 一区二区三区四区五区自拍| 久久久久亚洲AV成人无码国产| 免费A级毛片无码软件| 亚洲综合av成人网| 免费视频91蜜桃| 99久久国产精品免费一区二区三区| 老熟妇乱子伦中文观看| 超网禁国产女网站| 色悠悠久久久综合88| 国产亚洲精久久无码一区二区四季 | 国产福利一区二区精品在线 | 丝瓜视频在线观看免费| 久久91精品国产91久久户| 亚洲欧美日韩人妻综合| 中文字幕在线观看你懂的| 日韩无码自拍| 特黄α又粗又大又爽A| 国产极品粉嫩小泬内射正在播放| 超碰人人少妇爽澡性色浪潮a| 在线观看国产免费一级av| 国产精品福利免费在线| 歐美日韓國產網站| 日韩精品一区二区三区费暖暖| 丰满人妻被猛烈进入中文字幕| 国产av男人操女人逼| 无码的免费的毛片视频| 性爱国产亚洲性爱一级片| r级无码视频在线观看| 18岁以下禁看网站国产手机直播| 他扶着粗大挤进她的在线视频 | 欧美性爱视频在线播放| 国产高清窝窝视频免费观看| 欧美老妇多毛在线| 欧美日本在线一区二区三区| 97久久综合区综合小说| 亚洲一区第一页二区清纯唯美 | 亚洲色中文字幕在线播放囯产免费| 性无码免费一区二区三区在线男男| 免费观看成人社区天堂AV| chinese白袜gay体育生| 一级不卡免费观看毛片| 就去操偷偷操狠狠操| 欧美日韩视频在线观看高清| 国产99在线小视频| 亚洲ckplayer中文字幕| 国内精品自线一二三四2024| 歐美日韓國產網站| 日本中文字幕在线观| .精品久久久国产激情| 无码日韩做暖暖大全免费不卡| 欧美日产国产草草| 欧美A一级成人片| 日韩欧美一本视频在线观看| 男女日批视频| 成全视频大全高清全集在线播放| 亚洲精品成人二区网| av不卡在线观看一区| 操美女视频免费看无需下载网站| 自拍偷自拍亚洲精品影院| 国内自拍日韩99| 精品久久久久中文字幕app| 樱花草在线社区www中国中文| 女毛片一区二区三区| 精品一区午夜电影| 日韩亚洲欧美精品综合手机版 | 玖玖资源免费国产在线观看互动交流| 尤物yw193can在线视频| 色婷婷AV一区二区三区之红樱桃| 精品黄色毛片在线观看| 国内精品自线一二三四2024| qyule国产在线视频| 60岁熟女一区二区| 亚洲国产日韩在线高清| 玉米影视黄APP入口| 国产91精品久久久久久| 日本在线中文字幕20页| 老司机深夜福利视频91| 亚洲中午久久久久久国产精品| 特级aaaaaaaaa毛片免费视频| 国产无码日韩| 日本黄色免费在线观看视频| 黑人尾随强伦姧人妻爽翻天| 大香蕉久草视频在线| 亚洲欧美日韩综合精品国产综合成人久久大片91| 午夜影院黄是一个直播平台| 福利二区视频在线观看| 国自产拍av天天更新| 精品综合无码视频久久久| 国产三级精品在线不卡| 午夜精品久久久9999亚洲日本中文字幕天天更新 | 你懂的网站在线视频| 国产精品午夜寂寞视频| 男女视频在线看免费观看三区| 人妻与老人中文字幕| 国产日本在线播放va| 国产51自产区在线| 国产又粗又大又硬又长免费视频| 亚洲高清无码为满十八岁勿进入| 精品无码第一页| 中文字幕制服丝袜一区二区三区| 国产婷婷久久综合五月欲色| 日本三级一区久久精品| 免费无遮挡在线观看网站| 4国产精品无码制服丝袜| 综合网在线观看| 国产美女被躁喷水网站国产馆| 亚洲第一网色综合久久| 樱花草免费高清在线观看视频| 最新激情av在线免费观看| a级片a级片a片a级片| 国产黄色免费二级片i| 人妻av人人澡人人爽人人夜夜| 一级婬片高清视频一| 永久免费播放成人在线视频| 色色色色网站不卡色| 美女视频黄的全免费的| 亚洲国产日韩欧美高清不卡浪| 国产网红剧情演绎对白磁力| 男Ji大巴进入女人一区| 亚洲色无码专区在线观看第| 亚洲国产人成小说精选| 大天堂中文最新版在线官网| 国产成人av电影在线观看第二页| 欧美日韩黄色网址| a免费毛片在线播放| 三级片大全中文字幕| 毛片亚洲特黄久久| 久久精品国产精品亚洲红杏| 国产清纯白嫩美女正无套播放| mm1314免费视频观看| 国产3p交换在线观看| 91精选国产免费高清互動交流| 激情婷婷色综合| 91麻豆精品国产大片免费看| 伊人久久大线蕉av色首页| 最新高清中文字幕a∨专区| 在线观看播放国产日韩| 丁香婷婷婷中文字幕在线| 一级黄片欧美日韩| 亚洲免费日韩无码系列| 精品亚洲成Av人在线观看百度| 无码爱爱视频免费| 一本大道无码视频在线观看| 久久精品中文字幕久久久| 精选午夜精品福利视频导航| 国产色欧美精品日韩在线| 黄色国产在线视频网站| 夜夜爽一區二區三區精品| 精品久久A v无码不卡一区二区| 伊人影院久在线观看| 色悠悠久久久综合88| 久久成人综合网站| 99久久最新网址| 亚洲国内自拍中文欧美| 一区二区三区麻豆| 午夜婷婷一区二区三区| 女人被cao视频在线观看| 中文字幕在线视频欧美日韩| 夫妻日皮视频在线观看| 百花影视国产精品喷浆| 歐美成人精品三級網站| 精品国产黄a一级二级三级看三区| 爆乳美女午夜视频精品| 国产乱人伦偷精品视频观看| 国产女人爽爽爽毛片视频| 国产精品第一页在线观看互动交流 | 国产精品综合亚洲AV久久久小说| 忘忧草视频在线观看| 中文在线无码高潮潮喷| 亚洲欧美日韩999| 亚洲人妖一区在线观看| 精品国产一区二区三区A∨性色 | 国产网红剧情演绎对白磁力| 青青在线毛片| 亚洲精品视频分类91| 中文字幕在线视频欧美日韩| 7788亚洲精品无码专区在线| 丰满熟女午夜福利视频| 日本午夜在线影院| 国产大片特黄高清在线观看| 国产精品亚洲二三区在线观看| 簧色国在线观看| 亚洲日韩中文字| 韩日无码Av午夜寂寞久久久| 日本韩国欧美国产一级| 69国产精品视频免费| 日皮免费视频网站| 欧美一级www片免费观看| 亚洲国产天堂久久综合9999| 国产尤物在线视频不卡在线电影免费视频 | metart精品白嫩的asspics| 国产国产又黄又大又长又粗又硬视频| 精品中文免费国产| 丁香五月天缴清在线| Av日韩午夜一本电影| 欧美不卡视频一区二区| 国产精品999久久久一区二区视频 来吧综合网五月天新乱伦 | 一级婬片高清视频一| 免费一级A片不卡视频| 美女楼主别让男的用鸡巴操 | 久久精品中文字幕自慰喷水| 国产裸体一级视频| 国产亚洲午夜精品大秀在线| 久久精品一区二区三区免费播放| 欧洲自拍另类欧美综合图片区| 人人超碰人人爱超碰国产av互動交流| 国产v在线精品无码线 | 久久久久亚洲AⅤ成人一二三区| 欧美日韩精品一区二三区在线视频| 青青草在a线视| 国产又黄又湿又色又暴力视频| 无码日本精品一区二区三区视频| 国产三级久久久久男人的| 久久九九热中文字幕| 香蕉视频app免费下载| 国产成人欧美综合在线观看| 日本禁播大尺度电影 | 久久大香蕉国产视频| 少妇毛又黑又浓水又多?片| 中文字幕福利一道本| 两根双龙玩弄尿喷h肉4p| 亚洲aⅴ中文字幕在线| av免费看在线观看免费| y成人网网站青青草综合| 国产一区二区三区不卡自拍| 永久免费在线看a片视频| 红杏无码中文字幕一区| 他扶着粗大挺进了她的花苞| 不卡中文字幕亚洲综合久久| 亚洲v视频日韩一区二区在线| 大陆国产理论在线观看| 亚洲?V无码?V在线播放| 不卡亚洲中文字幕乱码在线| 色欲av不卡在线观看| 色综合久久中文色婷婷| 欧美亚洲日本在线免费观看| 亚洲精品无码午夜福利| 久久国产私拍毛片露出| 日韩一区中文免费视频| 成人毛片在线免费在线观看 | 亚洲黄色一区二区在线观看 | 七七七无码影院在线观看| 婷婷在线视频日韩色综合| 一级成人黄色大片免费| 国产精品猛烈视频| 亚洲色图在线观看网站| 国产se05ee短视频| 色婷婷影院一二三区| 中文字幕人妻伦伦又色又爽| 久久亚洲精品无码Av香大香| 极品尤物高潮潮喷在线视频| 午夜福利爱片在线播放| 黄色毛片黄色毛片| 看片18在线免费| 秋霞一级成人性爱电影| 磁力天堂樱桃bt在线搜索| 中文字幕在线成人大片| 日韩色区欧美色区在线观看| 五月天亚洲综合小说网| 国产成人性爱视频黄片亚洲| 高潮少妇又爽又无遮挡又免费| 国产激情视频综合在线观看| 青青草国产一区99| 国产高清一区二区二三区| 又长又硬又粗又硬免费视频| 国产无码免费视频网址| 999久久精品免费看国产一区二区三区| 中国一级淫片| 少妇做爰XXXⅩ性视| 人妻视频一区二区污| 樱花草在线社区www中国中文| 五月丁香啪啪啪啪| 国产高清一区二区二三区| 污污污成人网站久久蜜芽| 婷婷五月天社区在线观看 | 午夜桃色国产精品| 免费三级片中文字幕无码| 久久九九热中文字幕| 奶水少妇人妻系列无码专区| 亚洲一区二区三区精品蜜桃久久| 最新国产成人在线不卡视频| 国产这里都是精品| 粗大的內捧猛烈進出少婦視頻| 亚洲中文字幕无码在线高清| 婷婷丁香五月天亚洲一区| 国产日韩麻豆短视频| www色情成人免费视频| 7788亚洲精品无码专区在线| 国产色哟哟哟| 亚洲成av人片在线观看无| 亚洲午夜成人片在线| 亚洲a手机专区久久精品v| 人人超碰人人爱超碰国产av互動交流 | 中文字幕亚洲一区二区在线| 雷安ss劲爆车白色液体| 久久性爱视频网站欧洲精品| 大象蕉视频在线观看75| 积积对积积的桶的过程| 青柠视频手机在线高清观看 | H成人无码视频在线观看| 国产āv无码专区亚洲āv桃花庵| 亚洲成人福利导航| 亚洲中午久久久久久国产精品| 国产成人精品日本亚洲直国ll| 亞洲日韓中文第一精品| 亚洲特黄色免费毛片| 91日本中文字幕家庭教师| 日韩人妻丁香久久| 麻豆91人妻色婷婷| 国产乱子伦视频大全| 中文字幕久久久人妻无码| 亚洲欧美顶级欧美色妇xxxxx| 欧美美妇XXX一区二区三区四区| 欧美日韩国产综合新一区| 老司机亚洲精品影院在线观看| 色婷婷丁香中文字幕| 久久夜夜免费观看| 亚洲性色av一区二区三区银都上场美妙故事鲁啊鲁充满音乐! | 国产经典无码毛片| 成人性生交大片免费看视频app | 99精品国产一级a毛久久久一级a做免费视频| 国产激情久久久久影院老| 操逼视频免费| 小编在这里为大家带来看91欧美在线| 亚洲aⅴ无码片一区二区三区不卡| 人人在线视频| 视频一区二区日韩| 亚洲欧洲一二三区区视频| 大白屁股缝里浓黑的毛| 久久99国产综合精品三级婷婷| 久久婷婷五月综合国产色| 久久久久久极精品久久久| 牛牛天天人人综合影院| 高潮流水视频一区二区| 国产成人午夜福利免费无码R| 69精品无码一区二区网| 久久九九热中文字幕| 精品国产变态另类欧美| 亚洲精品成人二区网| 成人影院在观线看| 在线新拍91香蕉精品国产| 日本红怡院亚洲红怡院最新| 国产在线观看叼嘿视频| 国产精品美女久久久免费日本中文字幕在线2020 | 日韩乱中年女人伦av三区| 粉嫩呻吟福利一区二区| 奇米影视第四色888| 中国一级特黄高清毛片大片| 同城上门100元一次| 日本久久高清一区二区三区| 97超在l线免费视频| 久久精品麻豆韩国中文字幕| 福利在线视频一区热舞| 新婚91人妻无码精品一区二区毛片| 欧美日韩中文国产一区浪潮| 2021国产黄色精品综合| 亚洲无码在线观看强奸视频 | 国产精品视频无码| 成人无码H在线观看网站| 国产黄色一级黄色片| 一级无码播放免费网站| 久久精品免费视频6| 91麻豆国产视频专区| 日韩三级欧美自拍| 欧美理论片免费看| 亚洲一区二区日韩精品大桥未久| 日本精品久精品三级| 夫妻日皮视频在线观看| 亚洲三级毛片午夜免费观看| 99精品人人做人人综合试看 | 激情久久综合激情久久GiF| 大乳晕美女挤奶水福利视频| 2021av网站在线播放| 婷五月亚洲中文| 内衣办公室无删减完整版| 国产精品一线| 日韩视频无码精品人妻第一页| 国产综合欧美日韩视频一区| 亚洲综合色在线社区| 永久免费无代码开发平台网站| www国产精品视频| 日本激情视频网站w| 精品视频一区二精品视频一区二区 | 久久久久久极精品久久久| 国产一级性爱 亚洲视频一区| 精品人妻系列无码久久久久久| 久久久久免费看网站| 久久精品国产日韩不卡| 日本69日视频在线观看| 丁香婷婷婷中文字幕在线| 榴莲视频下载安装app黄| 老司机AV午夜福利精品| 久久精品人人| 三级欧美天堂网| 在线播放免费人成日韩视| 手玩护士睡老师勾搭女下属| 美女扒开下面流白浆动态图| 久久久久久综合对白国产| 国产成人午夜福利免费无码R | 黃色片子在線觀看一區二區三區| 69pao强力打造免费高速| 国产精品不卡免费| 视频一区二区都市激情| 国产又大又黄又粗又黄视频| 丁香婷婷婷中文字幕在线| 精品免费亚洲综合| 国产成人深夜视频在线观看 | 欧美亚洲日本在线免费观看| 欧美性爱综合网| 女女在线免费一区二区| 久久国产精品人麻豆电影| 中文字幕乱理片免费完整的| 欧美性爱国产一区二区三区| 日韩欧美激情| 一区二区三区春色| 国产精品亚洲精品欧美日本精品| 亚洲国产色播视频| 成人免费午夜毛片| 超碰97国内盗摄| 欧美日韩一级中文字幕网站| 欧美日韩综合在线亚洲一区二三| 久久无码高潮喷水免费看| 国产精品熟女久久久久| 亚洲精品国产偷五月丁香| 波多野结衣一二三区在线| 婷定香花五月天中文字幕在线| 国产亚洲精品自在线| 丰满熟妇岳sv一区HD| 正在播放国产一区二区三区| 亚洲精品自产拍在线观| 二三四黄色在线视频观看的| 91麻豆产精品久久久久久夏晴子| 一级做a爱片久久蜜桃| 婷婷五月中文字幕有码| 精品视频在线一区二区| 丁香色丁丁国产精品视频| 日本国产三级片免费观看| 久久久久国产亚洲一区| 日本中文字幕在线观| 国产网站在线免费观看| 久久久久久极精品久久久| 成人一区二区三区| 欧美麻豆国产精选波多野结衣| 丰满又黄又爽少妇毛片免费看| 亚洲黄片毛片视频| 色婷婷玖玖爱在线观看| 国产激情视频综合在线观看| 国产一区二区三区亚洲欧美| 在线观看欧美日韩精品亚洲| 日韩日韩日韩手机看片自拍| 粗大的內捧猛烈進出少婦視頻| 色综合一区二区日本韩国亚洲| 青青国产精品日韩视频欧美国产精品久久 | 免费无码又爽又刺激高潮AV| AV无码免费不卡在线观看| 榴莲视频下载安装app黄| 狠人av免费网站| 国产麻豆午夜三级精品| 色婷婷丁香中文字幕| 精品黄色毛片在线观看| 亚洲第一精品9| 军人野外吮她的花蒂h| 高清在线无码综合| 夜夜爽妓女88888视频免费看| 国产亚洲午夜精品大秀在线| 中文字幕一精品亚洲无线二区| 国产农村无码无水印迅雷下载| 欧美成人一区二区三区在线观看| 99久久国产综合精品成人 | 久久久亚州AV成人网站| 久久精品免视看国产成人首页| 久久无码天堂伊人| 毛片网站观看| 久久久久久国产精品日本| 高清亚洲国产av| 国产欧美成人一区二区?片| 无码av一区二区三区四区电影| 免费无码又爽又刺激高潮AV| 国内少妇一区二区三区| 亚洲国产成人午夜福利| 最新亚洲国产精品嫩草影院在| 看?V免费毛片手机播放| 欧美曰韩精品三级在线观看| 国产精品另类激情久久久免费| 久久婷婷五月综合国产色| 亚洲国产精品视频中文字幕| 国产高清av在线免费观看一区二区| 波多野结A∨衣东京热无码专区| 欧美日韩精品 码免费| 两个人2018韩国伦理片| 国产福利永久在线| 亚洲图片激情自拍激情文学 | 国产日本在线播放va| 黄大片视频在线观看| 国产在线永久免费观看| 最新日本久久中文字幕| 日产高清一区二区三区2022| 免费观看印度一级毛片| 国产白色视频在线播放| 人妻无码aⅴ一区二区三在线| 日韩三级视频影音播放| 国内外一级黄片免费看| 美女午夜福利精品| 国内自拍欧美亚洲综合福利| 亚洲乱码中文字幕15页 | 大香j蕉75久久精品免费8 | 羞羞草视频在线观看| 日本免费成人综合| 国产成人亚洲综合欧美一部| 黄色中文字幕免费在线观看| 亚洲AV永久无码嗯嗯啊在线| 人人妻人人澡欧美一区| 成人无码髙潮喷水a片| 美女楼主别让男的用鸡巴操| 国产一二区视频在线播放| 996热精品视频在线观看| 国产精品三级大片| WWW国产精品人妻一二三区| 无码在线观看亚洲高清| 精品高清三级国产| 国产精品麻豆097| 亚洲AⅤ优女A∨综合久久久| 国产一区二区三区免费公开| 亞洲日韓中文第一精品| 久久香蕉视频国产精品店| 国产精品9999久久久久| 美女被强行扒开双腿被桶屁股| 久久国产免费高清视频| 美女午夜福利精品| 九九精品视频看久久| 国外av性爱高清| 紧身裙丝袜女教师下载| 女人黃色大片久久| 日本精品久精品三级| 国产一级久久久久毛片精| 日本在线播放视频| 日产高清一区二区三区2022| a级毛片免费视频永久免费| 欧美视频在线观看免费播放| 10大黄色软件合集| 国产观看精品一区二区三区| JIJZZIZZ中国老师出水| 2018天天躁夜夜躁狠狠躁ap | 久久亚洲这里只有精品| 伊人色综合中文字幕| 久久亚洲a∨无码精品色午夜| 无码av免费毛片一区二区蜜臀| 97精品久久人人爱| 国产精品福利视频导航| 欧美大片午夜激一区| 亚洲?V无码?V在线播放| 国产精品无码午夜福利免费看| 网友分享中文字幕乱码亚州无线码二区心得| 免费看黄网站小说在线网址| 成人动漫+在线播放| 一本大道无码视频在线观看| 98久久无码一区人妻A片蜜| 国产精品伊人久久久久| 精品一级片内射视频播免费| 国产明星福利资源在线| 久久综合国产综合欧美综合| 黄色午夜福利电影| metart精品白嫩的asspics| 亚洲中文无码精品久久不卡 | 18禁止裸身美女无内衣| 国产福利激情影院| 歐美國產綜合日韓一區二區| 欧美性活活在线观看| 成人无码区免费a∨| 轻轻操一区三区| 黄瓜视频网址在线下载| 国精无码欧精品亚洲一区| 果冻视频传媒免费观看电影| 国产精品第2021在线| 无码H肉3D樱花动漫在线观看| 欧美日本午夜福利| 国产亚洲精品免费在线| 香港a毛片免费观看特级| 亚洲无码影院能看性爱视频的网站 | 正在播放久久波多野结衣| 无码的免费的毛片视频| 内射中文字幕| 久久中文日字乱码| 美脚丝袜国产精品超薄| 精品欧美在线观看日本| 日本毛多水多做受视频| 性生国产免费大片| 51亚洲精品午夜无码专区| 国产日韩在线视看高清视频手机| 亚洲a∨无码片一区二区三区| 簧色国在线观看| 精品99又大又爽又粗少妇毛片| 少妇亚洲无码精品| 精品国产一区二区三级四区| 国产99在线小视频| 亚洲色图在线观看网站| 国产成人无码精品久久久软件| 日本最新大尺度动漫| 看国产一级黄色片| 欧美精品福利视频一区午夜成人| 成人精品一级三级片| 男人放进女人阳道动态图| 日本巨大爆乳一级在线观看 | 成人AⅤ欧美一区| 久久久久免费看网站| 欧美亚洲日韩第四十六页| 亚洲欧洲日韩在线成人网| 能在手机看的不卡av| 成人性生交大片免费看视频app| 精选午夜精品福利视频导航| 亚洲欧洲色网视频| 中文字幕人妻在线视频| 手机亚洲欧美在线播放视频| 亚洲免费福利在线观看| 97超在l线免费视频| 成人av免费在线看| 国产在线观看不卡福利| 青青国产万部在线视频高清| 久久久人妻人人爽人人添| 秋霞中文字幕无码人妻| 日韩 精品 一区 私房| 国产一区二区三区不卡自拍 | 丰满岳乱妇在线观看视频国产| 比较有韵味的熟妇无码| 亚洲AV成人无码国产一区二区| 免费看黄网站小说在线网址| 国产一区二区三区不卡自拍| 日韩一区二区三区不卡高高清| 久久亚洲a∨无码精品色午夜| 久久99热这里只有精品6国产 | 亚洲国产乱码在线观看| 谁有在线观看日韩亚洲最新视频| 中文字幕乱理片免费完整的| 国模极品粉嫩嫩模大尺度裸体 | 狠狠操人人操| 久久九九精品一区二区三区| 丰满岳乱妇在线观看视频国产| 国产成人精彩在线视频50| 国产在线尤物不卡ab网站视频免费| 欧美长性免费短视频| 野花社区www视频日本| 国产一区二区在线观看vr| 91在线欧美精品在线观看| 日韩欧美中文久久精品伊人| 天堂久热中文字幕在线视频| 国产美女狂喷水潮在线播放| 秋霞网气质丰满肥臀x99av| 亚洲乱码中文字幕15页| 久草av电影在线观看| 日韩精品一区二区亚洲观看| 国产福利激情影院| 国产一区二区三区无码久久| 午夜国产精品成人无码| 国产极品粉嫩小泬内射正在播放| 了解最新免费视频精品一区二区| 老鸭窝一级毛片成人网站| 中文在线无码高潮潮喷| 夜夜爽一區二區三區精品| 亚洲国产天堂久久综合9999| 国产制服诱惑av| 抽、插免费观看久久av网| 爱爱永久免费网址| 国产精品免费激情| 日本一道免费dvd不卡专区| 无码在线一区二区三区不卡| 亚洲欧洲日本综合在线| 亚洲在Aⅴ极品无码天堂| 久久久久黄色| 免费无码又爽又刺激高潮AV| 天堂网亚洲人妻av一区二区三区 | 日韩中字无码三级片A天堂| 久久久久久综合对白国产| 欧洲精品综合亚洲| 欧美大片午夜激一区| 日本高清中文字幕这里只有精品| 国产成人免费精品在线观看| 又粗又黄又硬又爽免费视频| 亚洲爆乳观看一本| 成人熟女视频一区二区三区| 无码在线一区二区三区不卡| 一级毛片在播放免费| 国产刺激对白视频在线播放| 亚洲中文字幕啪啪| 国产精品极品色在线| 久久久一级免费毛片| 国产自产av一区二区三区性色 …| 欧美日韩精品 码免费| 岛国av一区二区精品| 一级国产在线观看高清| 亚洲免费人成网站在线观看 | 色婷婷丁香中文字幕| 亚洲第一成人专区| 精品高清三级国产| 亚洲午夜AV综合色欲AV| 免费一级α片在线观看欧美日韩在线一区二区| 亚洲Va中文字幕久久无码一区| 亚洲第一精品9| 三级网站在线在线播放| 每日更新国产| 欧美日韩第一区第138页 | 日本三级一区久久精品| 中文字幕不卡| 亚洲性色av一区二区三区银都上场美妙故事鲁啊鲁充满音乐! | 国产精品白浆无码流出动图| 成年无码av片在线狼人| 国产美女视频一区二区二三区| 亚洲国产AⅤ精品一区二区蜜芽| 国产亚洲午夜精品大秀在线| 黑牛影视在线观看一区二区| 秋霞视频写真爱爱视频动态| 国产一线视频在线看| 百花影视国产精品喷浆| 午夜免费福利伦理电影| 丁香五月网久久综合网| 扒开女人下面使劲桶视频| 99久久精品国产精油按摩店| 国产亚洲日韩av一区二区| 黄色中文字幕免费在线观看| 国产乱子伦精品无码码专区| 2021久久老司机福利精品网| 让你变得红润中文字幕无码免费不卡视频| 国产一区二区三区不卡自拍| 毛片免费无码视频| 久碰是精品香蕉频线观| 久久精品免费视频网| 99久久精品免费福利看国产| 国产精品视频你懂的网址| 手玩护士睡老师勾搭女下属| 亚洲第一AV无码| 福利视频日韩欧美| 国产精品视频无码| 欧美亚洲国产精品日本韩国一区二区三区 | 亚洲AⅤ片不卡无码天堂| 日本亲与子乱人aaaa| 亚洲欧美日韩春色一区| 黄片视频在线免费观看| 中文在线无码高潮潮喷| 国产中文字幕第一页| 善良的公的肉欲HD视频| 精品国产一区二区三级四区 | 在线国产手机免费视频| 日本国产综合亚洲| 日本三级片在线视频| 国产精品无码久久av嫩草软件| 午夜理论在线观看 | 国产精品高潮呻吟久久无码| 亚洲中文字幕成人在线| 国产免费无码午夜福利成人片| 国产一级137片内射| 亚洲欧美一级特黄在线| 久久夜夜免费观看| 国产偷2018在线观看午夜| 丁香花五月天激情AV| 性色AV成人免费观看| 免费的AV网站手机版| 青青经典国产在线观看| 秋霞视频写真爱爱视频动态| 手札国产视频福利永久 | 精品无人区一码卡二卡三| 中国久久一级黄色大片| 樱花草在线社区www中国中文 | 他扶着粗大挺进了她的花苞| 日本午夜在线影院| 在线免费激情视频网| 综合亚洲网发偷自拍第一页| 亚洲精品揄拍自拍首页一| 國產盜攝xxxx視頻xxxx| 国产明星福利资源在线| 男女性爱视频一级片| INTITLE免费吃瓜爆料| 国产大片特黄高清在线观看| 午夜理论在线观看 | 色两性午夜视频免费观看| 日本不卡网免费一区二区| 免费看成人毛片| 中文字幕制服丝袜一区二区三区 | 五月婷婷青青草| 国精品午夜福利视频不卡| 日韩一区二区三区电影在线观看 | 中文字幕无码白丝袜| 亚洲视频456第一页| a级片无码在线免费看| 国产亚洲综合在线综合| www.亚洲成人免费| 久久国产精品亚洲77777图片 | 婷婷成人国产欧美一区二区三区| 亚洲深夜日综播放网| 非洲黑人XXXXBBBB性精品| 亚洲一级在线观看视频 | 亚洲国产日韩欧美久久久| 国产在线一区尤物高清| 欧美一区二区日本国产激情| 久久精品国产日韩不卡| 欧美日本另类| 国内乱码精品一区二区| 欧美成人看片一区二三区图文 | 久草av电影在线观看| 亚洲国产精品久久网站| 日本一区二区三区免费的视频 | 美女大尺度人体艺术| 国产精品亚洲二三区在线观看| 亚洲精品自产拍在线观| 亚洲第一AV无码| 精品国产三级A∨在线电影| 国产寡妇淫乱a毛片视频| 亚洲欧洲日产国码?v系列天堂| 超热碰免费视频公开亚洲曰本| 欧美大bbb流白水| 无码精品国产aa精品| 无码国产精品一区二区一直播 | 国产特黄级AAAAA片免费| 亚洲aⅴ无码专区国产乱码波多| 国产精品自拍视频一区| 免费午夜无码片在线观看影| 大陆国产理论在线观看 | 婷婷在线视频日韩色综合| 亚洲美女中文字幕网 | av在线无码专区一区| 日日狠狠久久7777偷偷色| 亚洲人妻免费视屏| 琪琪精品免费一区二区三区| 亚洲日本免费在线观看| 少妇极品熟妇人妻av中文| 六月婷婷伊人精品| 中日欧洲精品视频在线| 色多多国产学生妹在线网址| 91精品无码人妻天堂| 国产成人在线观看不卡| 人碰人摸人爱免费视频| 国产精品极品色在线| 亚洲国产一区在线观看| 暖暖视频 免费 日本社区| 亚洲图片激情自拍激情文学| 国产亚洲a在线观看| 性欧美巨大乳boob| 甜蜜视频中文字幕不卡无码 | 日本午夜国产精品| 国产女明星一级毛片| AA免费毛片视频| 久久精品无码专区免费我| 亚洲国产一区二区在线观看阿娇 | 亚洲熟妇无码AV在线播三个| 日日狠狠久久7777偷偷色 | 欧美精品黑人一区二区三区| 粉嫩虎白女毛片人体| 亚洲熟妇无码AV在线播三个| 亚洲a毛片性生活| 能在手机看的不卡av| 日韩精品区一区二区三区激情| 色色色色网站不卡色| 日本三级韩国三级国产三级视频 | 曰曰摸天天摸人人看久久| 韩国理伦片在线观看免费| 五月天婷婷免费视频| 亚洲欧美激情四射黄色| 国产丝袜无码一区二区| 亚洲AV无码专区久久性色| 97人妻起碰免费公开| 偷拍人妻少妇刺激激烈视频| 找国产黄色一级毛片| 久久久久一区高清| 51精品国产AV无码久久久| 久久精彩视频| 中文AV无码AV日韩AⅤ| 日韩无码视频三区| 国产熟女真人一级毛片| 无码av免费毛片一区二区蜜臀| r级无码视频在线观看| 欧美日韩国产综合丶| 永久无码AⅤ免费网站| 九九热这里只有国产精品| 把美女抠到高潮在线播放果冻传媒| 中文字幕人妻在线视频| 欧美性爱视频在线播放| 免费人成视频在线看| 亚洲国产成人av影片在线| 国内精品自线一区二区三区不卡| 亚洲精品中文字幕无码爱爱| 综合国产日本中文| 久久av性生活片| 超碰97国内盗摄| 成年影片在线观看亚洲| 婷婷成人国产欧美一区二区三区 | 机机对机机手机免费下载大全2023 | 成人无码髙潮喷水a片| 亚洲aⅴ中文字幕在线| 午夜成年奭片视频在线观看| 国产伦视频在线观看 | 亚洲永久精品ww3344| 色婷婷狠狠18禁久久yyy中文在线| 成人日韩一区在线播放| 亚洲第一精品9| 日本亚洲欧美一区| 日产精品高潮呻吟AV久久| 久久无码中文字幕久婷婷| 大陆国产理论在线观看| 亚洲午夜精品第一区二区8050| 性感视频一区二区| WWW国产精品人妻一二三区| 黄色片视频网站免费| 亚洲乱码中文字幕精品久久| 无码人妻高清中字视频| 国产一二区视频在线播放| 99re九九热在线精品视频| 丁香五月深爱激情亚洲一区| 老司机亚洲精品影院在线观看| 国产一区二区三区免费公开| 亚洲精品国产精品美女丝袜| 懂色av一区二区三区四区在线| 成人无码网www在线观看**在线精品国产| 欧美A一级成人片| 性69式视频在线观看无码| 国产精品色是免费视频| av男人的天堂一区二区| 丰满人妻被中出中文字幕| 卡通动漫亚洲日韩国产专区| 午夜国产精品成人无码| 青青青青久久久久国产| 波多野结衣中文一区二区三区精品| 伊人成人亚洲视频| 免费人成视频在线看| 在线精品免费视频无码的| 日本二三本久道不卡免费| 超碰97这里只有精品99| 亚洲国产色播视频| 无码在线观看中文免费| 另类专区亚洲综合| 在线观看中出| 精品亚洲一区二区三区小蝌蚪| 亚洲一区二区成人精品| 扶着沙发后入上位骑乘| 在线免费观看xxxxx大片| 91视频免费下载| 毛片网站观看| 韩国理伦片在线观看免费| 性短視頻在線觀看免費不卡流暢| 国产亚洲综合在线综合| 午夜综合免费黄色视频| 日本三級久久網| 男女一区二区三区在线观看| 欧美丰满熟妇毛多多av电影| 欧美中文一区在线| 亚洲色图欧美色图裸体| 日韩精品午夜尤物禁止18点击进入 | 丁香色综合国产精品综合网| 在线国产片免费福利片永久视频| 国产亚洲精品a久久久久久a| 9277在线观看免费播放| 国产精品2022不卡在线观看| 国产精品理论片在线播放春色| 色婷婷狠狠18禁久久yyy中文在线 不卡不卡不卡不卡在线不卡 | 亚洲性色av一区二区三区银都上场美妙故事鲁啊鲁充满音乐! | 国产在线观看超a精品| 久久这里只有精品视频6| 成人片黄色大片| 又爽又黄又无遮挡的视频国产| 久久精品国产亚洲AV涩涩污| 成人做爰100部片是合法的吗| 午夜理论在线观看| 性无码免费一区二区三区在线男男 | 福利小视频在线播放| 亚洲欧美另类精品日韩爱如潮水社区| 日本一区二区不卡精品| 伊人成人图片网| 人妻好紧好滑好湿好爽| 操逼视频免费| www.这里只有精品| 欧美成人?天堂片在线观看 | 麻豆人妻少妇精品无码专区!互動交流 | 国产精品视频成人无码短剧| 国产中文天堂最新版在线| 日韩精品自拍视频1页在线观看网站| 国产又大又粗又长又爽视频| 国内久经典aaaaa片| 古代级a毛片免费观看中字| 99re只有精品在线6| 精品日本在线观看| 色天天综合色天天久久| 91区视频在线免费观看| 女人黃色大片久久| 国产午夜激无码av毛片不卡| 免费一看一级真人片全播放| 蜜臀精品视频一区二区三区| 国产精品无码黄色视频| 国产无码日韩无码| 歐美69精品國產成人| 一级在线AA免费观看| 中出无码在线观看高清| 国产观看精品一区二区三区| 欧美午夜国产小视频在线观看 | 国产黄色三级a片电影| 在线一区二区三区四区五区| 国产精品成人一区二| 第一次处破女18分钟免费| 日本一区二区三区免费社区| 色色wc无码夜夜| 亚欧洲日本在线观看| 九九影院理伦片私人影院| aⅴ尤物人人超级碰| 26uuu国产欧美综合A片| 尤物永久免费av无码网站| 黑人巨砲一区二区三区| 日本不卡网免费一区二区| 国产足脚恋在线观看视频| 欧美国产日韩在线免费看| 久久久久一区高清| 国产精品午夜福利免| 免费观看黄色无毛片| 日韩精品第一页色欲AV| 亚洲日本在线中文字幕dvd| 日韩精品成人片在线观看一区| 国产美女精品自在线拍电影| 国产爆乳美女呻吟娇喘图片| 国产系列视频一区黄色网欧美久久久| av成人在线播放| 黄片视频在线免费观看| 国产观看精品一区二区三区| 亚洲成人久久久av一区| 国产系列视频一区黄色网欧美久久久| 亚洲a∨无码片一区二区三区| 欧美牲交a欧美牲交aⅴ免费看| 内射深喉中文亚洲字幕| 国产成人深夜视频在线观看| 三级网站在线在线播放 | 日本久久亚洲高清| 国产精品私拍亚洲美女视频一区| A级一级毛片大全视频| 亚洲?V无码?V在线播放| 青青草国产一区99| 亚洲男同GAy作爱视频网站| 国外av性爱高清| AV无码免费不卡在线观看| 一级国产日韩欧美| 日韩成人精品二级图区| 久久精品国产欧美激情久久| 国产综合午夜三级在线| 亚洲精品久久久久婷婷午夜福利 | 免费看黄无遮挡滚床单视频| 亚洲无码在线观看强奸视频| 无码国产精品一区二区动漫免费 | 日韩人妻无码精品系列专区 | 日本三级韩国三级国产三级视频| 国产又黄又爽又无遮挡的视频| 欧美中文一区在线| 毛片不卡视频操逼| 亚洲 另类 日韩 功本道| 国产在线尤物不卡ab网站视频免费| 久久精品国产日韩不卡| 日韩无码自拍| 性欧美野外激情| 日本最新中文免费一区二区| 久久精品成人免费片| 永久无码AⅤ免费网站| 精品一级片内射视频播免费| 亚洲Av无码国产一区二区三区| 伊人精品久久中文字幕| 狠狠操人人操| 国产黄色三级a片电影| 男女xx视频网永久免费网 | 性色av无码免费一区二区三区| 又长又大又爽caopor在线| 福利二区视频在线观看| 欧美日韩一级中文字幕网站| 丁香婷婷婷中文字幕在线 | 欧美日韩另类久久| 国产3p交换在线观看| 大尺度性做爰的小说金陵春| 国产美女口爆吞精普通话朝夕| 性感美女诱惑亚洲一区在线视频| 久草福利资源首页| 日本丰满熟妇vide0sse| 赵惟依大尺度下面毛毛磁力| 亚洲乱码中文字幕15页| 精品国产一区二区三区A∨性色| 天天在线看片| 国产成人综合亚洲专| 国产成人8x精品一区二区| 无码人妻精品一区二区蜜桃黑人| 欧美美妇XXX一区二区三区四区| 日韩成动漫无码精品| 日日夜夜欧美| 在线免费观看xxxxx大片| 五月天成人激情| 极品少妇自慰到喷水AV网站| 91在线国产在线视频| 另类专区亚洲综合| 99r精品视频只有精品高清| 午夜综合免费黄色视频| 日韩欧美在线综合网| 日本高清不卡一区二区三区资讯| 露出调教羞耻91 九色| 日韩在线中文字幕视频| 亚洲a∨女人的天堂在线观看| 国产成AV人片在线观看福利| 免费国产午夜精品无码视频| 久久精品国产亚洲av久| 丰满少妇弄高潮了 www| 丰满少妇饥渴难耐视频| 国产成人精品人人2020视频| 国产欧美皮裤丝袜在线| 精品少妇专区偷人| 亚洲妇乱亚洲妇乱无码| 免费欧美日韩国产电影| 亚洲欧洲日韩91| 精品国产亚洲大片| 末成年小嫩xB性AV| 蜜芽忘忧草老狼二区大豆行情| 歐美人與動人物牲交免費觀看| 在线播放国产高清大学生| 日本69日视频在线观看| 可以在线观看黄色手机视频的网址| 中文字字幕精品码| 免费日本久久三级| 日本A级乱子色网视频| 亚洲精品不卡在线观看播放| 午夜无码片在观看影院| 久久久精品无码中文天美| 欧美日韩性爱视频一区| 3d动漫精品无码专区| 福利热搜影视大全免费观看超清| 群男啪插一女爽视频| 呦呦在现视频导航| 国产成人综合久久精品推荐| 在线观看的网站| 国产黑人精品一区二区三区| 亚洲欧美日韩春色一区| 十八禁免费无码无遮挡黄国产丝袜免费精品一区二区 | 大香j蕉75久久精品免费8| 中国国产三级毛片| 亚洲中文字幕成人在线| 中国无码在线看片| 国产美女久久久亚洲综合| 精品综合无码视频久久久| 久久精品一本视频| 黄色三级网站在线播放| 麻豆91人妻色婷婷| 人妻少妇无码一区二区三区| 阿v天堂2017在线观看| 国产亚洲欧美123| 毛片无码在线免费观看网站| 一本大道久久香蕉网站| 国产日产欧产精品精乱子 | 最新免费不卡一区二区三区| а√天堂中文官网在线8| 精品亚洲成Av人在线观看百度| 欧洲综合国产在线| 影視三級精品無碼| 男女一边摸一边做爽爽爽的免费| 亚洲午夜性爱免费视频| 2020国自产拍精品av| 久久精品国产精品亚洲红杏| 18国产精品成久久久久三级| 亚洲18无码AV综合一区二区三免费精品| 不卡免费a级毛片无码∨最熱門最齊全電影! | 日本三级韩国三级国产三级视频 | 午夜伦电影自拍殴美性爱| 国内精品视频久久久| 勾搭女技师按摩对白视频观看| 久久午夜青青草原影院 | 又爽又黄又无遮挡的视频国产| 日本中文字幕在线一区二区三区| 国产精品久久自在自2021| 免费观看国产精品福利永久| 少妇被黑人到高潮喷日韩精品一区二区亚洲AV| 999国内精品视频在线看免费| 磁力天堂樱桃bt在线搜索| 一级女人18片毛片蜜桃aV| 免费看男女做好爽好硬视频| 亚洲第一色尹| HEYZO无码综合国产精品227| 亚洲国产精品久久一线北| 18禁男男H黄动漫啪啪| xh98hx国产在线播放| 国产欧美皮裤丝袜在线| 日日干天天干| 久久婷婷五月综合国产色| 三级欧美天堂网| 91在线国产在线视频| 99re这里是国产精品首页| 午夜一级福利在线| 午夜在线日本护士视频| 久久亚洲国产中文女同av| 日本国产综合亚洲| 牛牛超碰国产| 正在播放久久波多野结衣| 女18毛片亚洲一级毛片真人| 制服丝袜+国产精品+中文字幕| 2020麻豆国产美女精品久久| 日韩精品一区二区三区黑人| 日日夜夜欧美| 在线国产手机免费视频| 无码中文字幕拍偷乱偷精品 | 欧美 亚洲 自拍 另类| 92午夜福利在线少妇| 视频一区二区都市激情| 欧美成人看片一区二三区图文 | 精品丝袜国产自在线拍av一区| 国产成人午夜福利免费无码R| 手札国产视频福利永久| 男女18禁啪啪无遮挡激| 国产一二区不卡高清视频| 久热这里只有国产中文精品六| 欧美日韩性爱视频一区| 亚洲美女高潮久久久| 91日本中文字幕家庭教师| 精品丝袜国产自在线拍av一区 | 无码精品国产一区免费| 人人亚洲色图五月丁香| 国产午夜福利禁止18| 人妻女教师沦为玩物h| 国产乱子伦视频大全| 精品无码人妻一区二区免费AV| 超碰CAO已满18进入离开官网 | 国产无码网站| 亚洲日本乱码中文字幕| 午夜理论片在线观看免费| 好色TV在线观看| 国产日韩欧美一区二区三区综合| 在线亚洲精品视频永久播放| 免费一级α片在线观看欧美日韩在线一区二区 | 国产精品成人黄色av| 成人做爰a毛片免费播放| 在线观看免费福利视频网| 粉色视频免费高清下载观看| 打扑克牌又疼又叫软件下载大全 | 欧洲高清不卡一区二区三区| 荔枝成人免费视频观看| 扒开内裤边吃奶xxoo| 亚洲欧洲无码精品秘| 波多野结衣在线免费视频| 免费观看国产黄网站在线播放| 国产麻豆一级片| 精品国产乱码久久久久久毛| 影音先锋欧美激情| 亚洲欧美一区二区三区孕妇 | 久久99国产综合精品三级婷婷 | 国产理伦片公妇乱电影| 国产日韩在线视看高清视频手机 | 国产又大又黄又粗又黄视频| 最近最新2018中文字幕电影 | 精品国内一区二区三区免费视频 | 99久热精品视频在线观看 | 麻豆高跟丝袜自慰| 影音先锋欧美激情| 我被夫的上司水野朝阳在线观看| 午夜福利在线播放国产| 在线免费观看xxxxx大片| 7788成年網站免費觀看| 91九色ts国产另类人妖| 色两性午夜视频免费观看| 正在播放久久波多野结衣| 歐美日韓一區二區綜合| 久久99久久99精品免国产成人精品综合网站| 被各种陌生人np调教灌尿| 太色啦亚洲欧美日韩高清专区| 欧美成人剧情中文字幕| 一级黄色片操操操你| 国产视频久久久久久久久| 亚洲欧美性爱电影| 国产在线98视频播放| 一级免费视频网站在线观看视频| 久久精品一本视频| 国内久经典aaaaa片| 午夜成年奭片视频在线观看| 七七七无码影院在线观看| 亚洲精品国产精品美女丝袜| 国产色婷婷亚洲99精品小说| 国产精选 桃色阁| 歐美69精品國產成人| 人妻女教师沦为玩物h| 亚洲三级毛片免费在线| 丁香狠狠色婷婷久久综合一级毛片在线视频 | 日本xxx高清色视频| 亚欧洲日本在线观看| 精品无人国产偷自产在线日本| 蜜桃视频在线成人网站观看| 國產成人精品午夜福利| 国产成人免费精品在线观看 | 午夜无码精品两性| 日日狠狠久久7777偷偷色| 国产欧美日韩91精品| 18国产精品成久久久久三级| 国产在线拍揄自揄拍有码| 亚洲色图欧美色图裸体| 精品国产亚洲一区二区麻豆| 日日碰狠狠添天天爽无码视频| 豐滿人妻熟婦亂又倫精品視| 一级a毛片性生活视频| 国产精品不卡免费| 免费级无码婬片AAAAA毛片| 五月天婷婷丁香激情综合网| 91在线欧美精品在线观看 | 亚洲成av人片在线观看无| 国产www又大又爽| 国产精品天天在线看| 人妻少妇无码一区二区三区| 亚洲乱码中文字幕精品久久| 粉嫩呻吟福利一区二区| 日本黄r色成人网站免费| 午夜精品视频在线看| 国家一级午夜高清| 他扶着粗大挺进了她的花苞| 日皮视频免费观看APP| 91精品久久廣大網友最新影片| 久久久久久久久久久鸭| 亚洲AV日韩徖合一区| 丰满熟女午夜福利视频| 午夜桃色国产精品| 免费成人一级毛片电影| 先锋影音一区三区在线观看| 伊人久久大线蕉av色首页| 久久亚州视频精品| 免费成年人视频国产| 国产伦精品一区二区三区视频小说 | 精品中文免费国产| 国产在线91精品免费观看| 人成免费在线视频有码| 欧美中文字幕在线播放| 高清在线无码综合| 美女扒开尿口秘喷牛奶软件下载| 国产美女精品自在线拍电影| 日本亚洲精品无码专区图| 日日夜夜天天干还会玩转热点| 国产婷婷爱午夜激情福利| 亚洲欧美一区二区成人精品| 國產劇情無碼網在線觀看| 亚洲色图四房播播| 久久人人97超碰人人澡爱香蕉| 亚洲国产精品资源| 新婚少妇杨雨婷献身高官| 十六以下岁女子毛片免费| 色综合AV社区男人的天堂首页| 欧美日韩在线观看视频第一页| 國產精品國產三級國產AV麻豆 | 丰满少妇高潮惨叫久久久久| 网友分享欧美一级A片一区二区三区中文心得 | 一本大道av伊人久久综合蜜芽| 亚洲aⅴ中文无码字幕色下药| 伊人久久综在合线视频| 色妞视频一级毛片| 污草莓APP免费下载| 一级黄色片久久国产片| 三级精品免费国产| 国产一二区不卡高清视频| 少妇高校长白结全无删减视频| 伊人久久大香线蕉?v色| 色噜噜狠狠成人网| 亚洲欧洲无码av在线播放| 成人性生交大片免费看视频app| 印度AV免费播放一区| 国产乱对白刺激视频在| 久久久久久极精品久久久| 中文字幕亚洲自拍亚洲v在线| 中国久久一级黄色大片| 办公室里玩弄丝袜高跟秘书| 亚洲欧美成人激情在线观看| 国产乱人伦偷精品视频观看| 羞羞视频免费网站入口| 久久久久亚洲AV成人毛片韩 | 福利国产在线观看网站| 日本在线中文字幕20页| 色色wc无码夜夜| 夜夜嗨亚洲国产糸列久久精品 | 91人妻无码在线免费视频| 久久黄色A一级目本视频| 男女做羞羞猛烈免费网站| 综合区小说区图片区| 18禁男男H黄动漫啪啪| 亚洲日产国产视频无删减| 亚洲国产一区二区?毛片| 国产精品视频成人无码短剧| 白嫩精品一区二区欧美| 成年美女黄网站18禁免费APP| 成年人视频特黄| 亚洲六月丁香色婷婷综合久久| 国产在线观看叼嘿视频| 精品一区二区三区免费在线观看| 亚洲欧洲精品中文字幕在线| 老色批永久免费网站| 久久99热这里只有精品8| 日本亲与子乱人aaaa| 国产欧美亚洲一二三区| 国产精品无码一区红杏在线| 日本三级和搜子同居的日子2| 亚洲精品自有码中文字| 羞羞2024最新网| 国产精品亚洲二三区在线观看| 久久精品国产亚州Av无码| 青青在线一区观看视频在线高清| 少妇极品熟妇人妻av中文| 永久免费无码无卡顿a片| 国产黄片Ha一区二区三区| 五月天亚洲综合小说网| 亚洲第一网色综合久久| 国产成人精品日本亚洲直国ll| 新婚91人妻无码精品一区二区毛片| 国外三级视频在线观看| 无码码一区二区精品视频久久久 | 乱淫一卡色一情一乱一乱一区| 亚洲精品第一页在线| 亚洲精品国产自在现线网站| 国产a级一级久久真人片| 一级黄色片操操操你| 韩国无码色视频在线观看| 精品一区二区免费在线观看视频| 三级精品免费国产| 亚洲国产精品自产在线播放| 精品综合无码视频久久久| 中文字幕不卡精品视频在线| 国产1769一七六九视频在线| 人妻 清高 无码 中文字幕软件| 亚洲国产中文一区| 超碰97无码一区二区三区| 免费一区二区欧美在线视频| 在线观看视频精品无码?V专区| 国产成人午夜在线观看| 久久精品毛片免费观看av| 粉色视频APP成人片| 每日更新av高清不卡在线观看| 欧美性活活在线观看| 单亲妈妈用性缓解孩子压力| 国产免费黄视频| 国内精品视频久久久| 色综合精品视频在线 | 中中文日产幕无线码一区| 国产美女精品自在线拍电影| 亚洲AV乱码一区二区三区www| 中文字幕在线视频欧美日韩| 国产高清国产专区国产精品| 日韩三区在线观看视频| 日韩一区二区三区电影在线观看 | 日本免费的中文字幕| 亚洲成人av福利免费观看| 久久视热频国只有精品| 久久精品中文字幕自慰喷水| 欧美午夜国产小视频在线观看| 在线亚洲精品视频永久播放| 狠狠天天躁中文字幕| 国产激爽大片高清在线观看| 牛牛天天人人综合影院| 欧美精品久久久久久大尺度| 久久伊人精品波多野结衣| 爆乳美女午夜视频精品| 夜夜爽妓女88888视频免费看| 一区二区三区四区五区自拍| 福利视频导航一区二区| 国产日韩欧美中文一区| 京东天美麻豆果冻传媒| 婷婷六月狠狠干| gogogo免费高清人体摄影| 一级黄色大片在线观看| 国产精品丝袜在自线拍| 亚洲爆乳观看一本| 久久综合国产综合欧美综合| 91激情国产欧美| 国产2018久久久黄片| 久久久亚洲精品高潮抽搐| 国产视频精选| 欧美一区二区日本国产激情| 芊芊的被校长脔日常H| 久久电影三级片| 扒开女人下面使劲桶视频| 亚洲色图欧美色图裸体| 色婷婷玖玖爱在线观看| 麻豆手机在线观看| 色婷婷五月综合亚洲大全在线播放| 特黄α又粗又大又爽A| 9277在线观看免费播放| 国产精品视频免费看久久国内精品免费看久久| 午夜激情国产| 欧美性爱偷拍高清综合区| 亚洲国产人成小说精选| 亚洲国产精品成人A∨无码久久综合网| 最新国产精品国产乱子伦| a网站在线观看片源丰富、内容全面 | 办公室少妇不带套| 91麻豆产精品久久久久久夏晴子| 手机福利视频一区二区| 国产精品无码剧情?V| 甜蜜视频中文字幕不卡无码| 美女大尺度人体艺术| 日韩欧美中文字幕在线播放视频 | 亚洲无码高清大片在线观看| 日韩一区在线亚洲| 美女午夜黄色毛片| 久久午夜夜伦鲁鲁片不卡| 最新亚洲人成网站在线| 国产系列视频一区黄色网欧美久久久 | 99re66热这里只有精品| 国产乱子伦视频露脸| 2021国产精品毛片久久| 欧美日本另类| 内射深喉中文亚洲字幕| 996热精品视频在线观看| 欧美精品黄网站在线播放| 91香蕉视频黄色版 | 一本大道无码视频在线观看| 在线观看播放国产日韩| 欧美影院一区二区三区| 最新高清中文字幕a∨专区| 西西444www高清大胆| 亚洲国产中文成人手机在线| 婷婷成人国产欧美一区二区三区| fc2ppv视频在线观看| 日韩欧美中文字幕在线播放视频| 差差差30很疼的视频软件| av中文字幕一区二区| 国产精品综合亚洲AV久久久小说| 久久麻豆精亚洲av| 10大最污软件不要钱| 亚洲久久无码福利专区| 日韩无砖专区一中文字目第2页| 日韩毛片高清在线| 无码午夜精品久久久久久中宇| 国产日韩欧美视频集hd在线观看| mm1314免费视频观看| 久久精品麻豆韩国中文字幕 | 欧美一区二区视频在线| 精品国内福利视频导航| 秋霞网气质丰满肥臀x99av| 亚洲成?人片在线v观看| 91久久精品一区二区三区| 91激情国产欧美| 欧美亚洲黄片在线| 男生女生一起怼怼怼| 丁香狠狠色婷婷久久综合| 国产se05ee短视频| 久久亚州视频精品| 亚洲a手机专区久久精品v| 亚洲Av无码国产一区二区三区| 久久久久亚洲国产av麻豆| 欧美不卡视频一区二区 | 亚洲成人精品福利在线观看| Av亚洲精品毛片av| 亚洲欧美一区二区综合网站| 免费老鸭窝国产a国产片高清网站| a网站在线观看片源丰富、内容全面| 精品免費國產一區二區女| 日韩精品自拍视频1页在线观看网站 | 三级日本韩国欧美黄色 | 国产一区丝袜高跟在线| 99久久精品三级| 天堂8资源8地址8| 最近中文字幕mv2018免费看| 少妇人妻精品视频三区二区 | 亚洲AV无码专区久久性色| 最近高清中文字幕免费av| 亚洲AV成人无码国产一区二区| 亚洲男男同人啪啪拍网站| 比较有韵味的熟妇无码| 996热精品视频在线观看| 国产乱人伦偷精品视频观看| 精品夜晚视频91在线亚洲无码m.| 少妇极品熟妇人妻av中文| h片在线观看视频不卡| 女教师波多野结衣与黑人| 国产成人a级视频免费观看| 国产 中文字幕 在线| 欧美精品黑人一区二区三区 | a免费毛片在线播放| 国产欧美日韩第一章午夜在线| 日本欧美韩国在线| av在线国产哟哟| 国产初高中精品在线观看| 美女被日一区二区| 天美麻花星空免费观看乡村版| 美脚丝袜国产精品超薄| 国产精品极品在线aaaav| 亚洲深夜日综播放网| 99久久九九免费观看| 国产精品成人黄色av| 久久婷五月综合| 黄瓜视频网址在线下载| 亚洲三级无码精品| 成人亚洲欧美在线电影www色| 日本性爱网站一区二区| 呦呦在现视频导航| 草莓视频懂你更多破解版| 国产三级片网站| 91东航翘臀女神在线观看有码| mv3国产首页电影在线观看| 亚洲日韩欧美国产高清v在线观看| 久久国产精品亚洲77777图片| 成年无码av片在线狼人| 国产二区中文字幕在线观看| 丁香五月深爱激情亚洲一区| 精品国产亚洲一区二区麻豆| 让你变得红润中文字幕无码免费不卡视频| 亚洲成人免费久久| 中文字幕亚洲精品日韩av| 国产精品无码黄色视频| 免费少妇中文无码| 精品国产亚洲一区二区麻豆| 黑人尾随强伦姧人妻爽翻天| 综合另类小说色区色噜噜| 中文字幕在线观看你懂的| 偷窥亚洲四五十岁熟女免费视频 | 国产翘臀后进式在线观看视频| 2021av网站在线播放| 午夜男女爽爽影院免费观看视频| 中文字幕福利一区二区不卡.| 丰满少妇人妻久久久久久4| 日韩 国产 中文 综合网| 国产观看精品一区二区三区| 色噜噜精品一区二区三区在线观看| 337P粉嫩大胆色噜噜噜九色| 国产色婷婷亚洲99精品小说 | 91华人超碰国产| 午夜在线日韩免费精品福利| av不卡在线观看一区| 亚洲国产精品尤物yw在线| 婷婷五月天社区在线观看 | 日韩精选无码不卡| 伊人色综合中文字幕 | 中文无码精品一区二区三区在线| 免费无码又爽又刺激高潮AV| 国产精品伊人久久久久| 手机看片福利一区二区三区| 国产网爆门事件流出在线| 久久精品桃花综合| 欧美高清精品一区二区不卡| 贵妇全身高级精油按摩| 国产又粗又大又猛又爽无遮挡| 国产婷婷爱午夜激情福利| 青春禁区视频在线观看直播免费| fc2ppv视频在线观看| 国产精品综合亚洲AV久久久小说| 无码在线观看中文免费| 欧美SM影视永久免费在线| 久久午夜免费福利最新| 国产精品亚洲精品欧美日本精品| 伊人久久大香线蕉?v色| 日本一区二区三区四区电影| 韩国三级夫妇换交换性完整版| 亚洲色无码专区在线观看第| 欧美牲交a欧美牲交aⅴ免费看 | 国产一级婬片AA片免费水多多 | 高清在线无码综合| 久久狠狠中文字幕2017婷婷| 亚洲?∨精品一区二区三区| 用户可以在平台上观看各种黄色大全下载| 久久精品无码专区免费我| 高潮一区二区三区乱码| 久久久精品无码中文天美| 亚洲综合无码在线观看| 三级片大全免费观看| 男男全肉高H湿视频在线观看| WWW国产精品人妻一二三区| 青青大草原久久揄拍片| 日韩色图无码专区色图| 国产三级农村妇女在线看| 国产精品无码黄色视频| 国产精品白浆无码流出动图| 一级a理论片视频在线| 天天婬荡对白在线观看一区| 积积桶肤肤的免费软件大全一个| 一二三四欧美成人网| 成人永久免费视频网站在线观看| 粉嫩呻吟福利一区二区| 日本韩国欧美国产一级| 精品国产变态另类欧美| 欧美亚洲日韩第四十六页| 三级片大全免费观看| 人人插人人草| 把美女抠到高潮在线播放果冻传媒 | 亚洲午夜成人片在线| 操美女视频免费看无需下载网站 | 亚洲国产高清不卡| 亚欧洲日本在线观看| 91福利区久久久久| 扒开内裤边吃奶xxoo| 天堂8资源8地址8| 午夜桃色国产精品| a级片无码在线免费看| 久久国产欧美一区二区精品一↙ | 香蕉视频app免费下载| 男女一边摸一边做爽爽爽的免费| 91香蕉国产亚洲一二三区蜜臀| 免费在线观看高清电影热播电视| 日本免费成人综合| 国产清纯粉嫩初高生嗯啊呻吟 | 性色AV成人免费观看| 在线观看黄片有限公司| 国产在线精品国自产拍影院| 18禁日本黄无遮挡禁免费网站| 国产3p交换在线观看| 第一次处破女18分钟免费| 亚洲午夜精品一区二区三区免费视频 | 国产麻豆一级片| 18岁以下禁看网站国产手机直播| 99麻豆制服丝袜视频| 国产 日产 欧产网站| 欧美麻豆国产精选波多野结衣| 亚洲av乱码一区二区三区观影| 免费人妻精品一区二区三区0| 狠狠天天躁中文字幕| 国产精品成人黄色av| 久久黄色A一级目本视频| 磁力天堂樱桃bt在线搜索| 国产一区二区三区免费公开 | 九九影院理伦片私人影院| 亚洲波霸精品中文字幕| 国产精品无码久久av嫩草软件| 欧美日韩在线看电影| 国产一级aⅤ在线精品| 欧洲精品综合亚洲| 久久伊人精品波多野结衣| 亚洲国产精品久久网站| 西西大胆午夜人体视频无码 | 97在线视频免费人妻| 视频一区精品自拍亚洲不卡| 一級黃色片在線觀看| 撕开她的裙子手指滑进她 | 色婷婷狠狠18禁久久yyy中文在线| 国产成人a免费| 国产华人永久免费| 国产欧美一区二区三区视频在线观看| 午夜91视频免费| 亚洲国产精品一区二区第一 | 调教女人呻吟喷水视频了| 中出内射颜射骚妇| 精选午夜精品福利视频导航| 亚洲 国产 制服 丝袜 清纯| 亚洲欧美激情综合区久久| 免费人成视频在线看| 丰满的少妇XXXXX人妻| 日韩精品第一区2区3区4区三区 | 亚洲国产色播视频| 自拍 日韩 清纯 欧美| 日韩精品一区二区三区亚洲av| 青柠视频手机在线高清观看| 国产婷婷久久综合五月欲色| 四库影院永久四虎精品国产| 日本特黄视频播放| 久操视频在线观看无码毛片| 第一次处破女18分钟免费| 亚洲第一网色综合久久| 欧美人与动人物在线| 亚洲欧美一区二区三区孕妇| 在线免费观看xxxxx大片| 国产精品制服自慰喷水综合久久久 | 精品人妻无码一区| 了解最新免费视频精品一区二区| 暖暖视频 免费 日本社区| 羞羞草视频在线观看| 日本高清视频网址| 人成免费在线视频有码| 亚洲伊人久久大香线蕉啊| 丝瓜视频在线观看免费| 一区二区三区日韩午夜影片| 精品国产亚洲大片| 性感美女诱惑亚洲一区在线视频| 亚洲欧洲国产码视频专区 | 亚洲人成网线在线播| 公车全黄h全肉短篇公车之狼| 欧美国产日本韩国在线| 一级成人黄色大片免费| 亚洲 欧洲 日产 专区| 无码国产精品一区二区一直播| 97国产婷婷综合视| 六月婷婷亚洲激情乱伦文学| 翘臀爆乳裸体啪啪免费观看| 国产精品熟女高潮无套| 精品国产变态另类欧美| 国产又大又黄又粗又黄视频| 亚洲国产成人超?在线播放| 亚洲AV无码国产精品色| 日本最新大尺度动漫 | 热99精品只视频有里面有| 日本最新中文免费一区二区| 爱爱永久免费网址| 日韩区一区二区三区区四| 亚洲六月七月丁香综合| 色婷婷五月综合亚洲大全在线播放 | 秋霞一级成人性爱电影| 看片18在线免费| 久久精品国产一区二区三区肥胖| 国产免费看黄色大片| 欧美三级在观线看| 成人黄色av片在线观看| 国产华人永久免费| 精品伦理久久瑟瑟社区jk| 國產盜攝xxxx視頻xxxx| 欧美成人免费久久精品| 亚洲性色av一区二区三区银都上场美妙故事鲁啊鲁充满音乐! | 欧美日韩福利电影一区| 超网禁国产女网站| 伊人影院久在线观看| 永久免费观看美女视频| 国产成人欧美综合在线观看| 亚洲bt欧美bt中文字幕app| 日韩精品中文高清一区| 一级片欧美欧美在线欧美| 成人动漫+在线播放| 忘忧草视频在线观看| 国产精品一区女同日常| 久久久久亚洲AV成人无码国产| 久久精品国产一区二区三区肥胖 | 欧美性爱一我在线级| 麻豆人妻少妇精品无码专区!互動交流| 非洲黑人XXXXBBBB性精品| 91久久精品一区二区三区| 在线观看免费视频69式| 中文AV无码AV日韩AⅤ| 亚洲国产精品尤物yw在线| 免费无码又爽又刺激高潮AV| 永久免费在线看a片视频| 性色AV成人免费观看| 无码在线观看中文免费| 三级片大全中文字幕| 亚洲男人第一av网站| 亚洲电影黄色一级片| 视频区中文字幕日韩专区| 国产偷窥熟女高潮视频| 2021精品国产无码在线不卡| 青青久久国产成人免费网站| 中文字幕福利一区二区不卡.| 99视频精品免费| 日韩国产欧美三区四区| 二三四黄色在线视频观看的| 五月丁香啪啪啪啪| 美女视频黄的全免费的| 国产成人网在线视频导航| 泽艺影城欧美三级在线| 欧美日韩在线看电影| 多毛bgmbgmbgm胖在线| 五月丁香啪啪啪啪| 老司机6794在线视频ae| 色色wc无码夜夜| 国产麻无矿码直接观看| 亚洲少妇自慰在线观看| 国产亚洲av美女网站| 日韩一区二区三区无码a片| 亚洲最大黄色在线视频| 扒开内裤边吃奶xxoo| 军人野外吮她的花蒂h| 丝瓜视频污在线观看| 一级国产在线观看高清| 百花影视国产精品喷浆| 亚洲无码在线观看强奸视频| 成人无码网www在线观看精东| 色多多国产学生妹在线网址| 久久久熟女人妻波多野结衣| 久久这里免费精品视频毛片| 先锋影音一区三区在线观看| 欧美曰韩精品三级在线观看| 精品国产精品亚洲| 日韩免费成人电影| 久久久人久久人妻毛片| 色天天综合色天天久久| 国产高清一区二区二三区| 午夜成年奭片视频在线观看| 国产三级小视频网站| 久久无码高潮喷水| 亚洲一区二区三区福利精品在线 | 精品区一区二区三香蕉| 日本在线看片免费视频| 福利视频导航一区二区| 西西大胆午夜人体视频无码| 国产 中文字幕 在线| 国产精品三级大片| 老鸭窝日韩一级一区二区 | 午夜婷婷一区二区三区| 午夜亚洲国产理论片中文| 亚洲成人久久综合| 亚洲天堂无码乱码在线观看| 四虎影视库国产精品一区| 亚洲成人久久精品国产| 无码人妻精品一区二区三区性色| 日韩成人免费视频| a毛片在线不卡无码| 日韩精品一区在线免费观看| 欧美视频免费在线观看视频| 女生扒开下面让男人捅| 久久久一区二区人妻av| 一级做a爰片在线观看| 国产又粗又大又硬又长免费视频| 私密视频黄网站免费无码视频| 综合欧美中文影视| 午夜dv内射一区二区| 精品亚洲成在人线AⅤ无码| av在线无码专区一区| 亚洲MV大片欧洲MV大片精品精品精品| 国产午夜激无码av毛片不卡| 国产欧美日韩91精品| 曰欧一片内射VΑ在线影院| 欧美日韩国产综合新一区| 亚洲精品视频网站在线观看| 国产粗又硬又黑| 他扶着粗大挺进了她的花苞| 国产片精品在线| 亚洲香蕉国产精品第一页| 欧美国产日韩在线免费看| 国产成人午夜福利免费无码R| 久久午夜免费福利最新| 国产精品灌醉女同事久久| www色情成人免费视频| www色情成人免费视频| 亚洲中文无码精品久久不卡| 在线观看精品欧美一区| 六月婷婷亚洲激情乱伦文学| 131午夜美女爱做视频| 久草最新在线观看网址| 囯产精品视频一区二区三区乱码| 最新高清中文字幕a∨专区| 日本特黄视频播放| 亚洲一区二区三区无码色欲AV| 国产99视频精品免费专区 | 贵妇全身高级精油按摩| 欧美日韩高清交日韩主播在线观看| 国产美女精品自在线拍电影| 亚洲无码在线第一页| 国产清纯白嫩美女正无套播放| 又大又粗出水偷拍真人视频| gogo全球高清大尺度视频| 亚洲?V无码?V在线播放| 激情毛片av无码区| 久热这里只有国产中文精品六| 一级片欧美欧美在线欧美| 免费观看国产精品福利永久| 好好的日com欧美| A级欧美又大又粗又硬| dxj在线视频·男人的天堂网站| 少妇喷潮弄出白浆视频| 人碰人摸人爱免费视频| 欧美理论精品一区二区三区| 超碰人人少妇爽澡性色浪潮a| 久久久久人妻一区精品色奶水| 波多野结衣在线观看免费区 | 日日狠狠久久7777偷偷色 | 视频一区亚洲欧美校园| 精品国产99亚洲日韩久久久| 男女肉粗暴式进入120秒| 国产成人免费v片| 2018天天躁夜夜躁狠狠躁ap| 丰满少妇高潮惨叫久久久| 99一区二区三区免费观看视频| 日韩午夜理论电影无码观看| 福利视频日韩欧美| 青春草国产一区二区在线观看| 特级做a爰毛片免费看一区| 在线观看免费视频69式| 歐美人與動人物牲交免費觀看| www.99热这里只有精品| 少妇伦子伦精品无码| 一区二区三区麻豆| 国产精品无码毛片一级| 好屌妞这里都是精品| 成年人免费黄色h网| 毛片网站观看| 日韩精品啪啪视频一道| 99精品人人做人人综合试看| 天天做人人爱夜夜爽2020| 亚洲 国产 制服 丝袜 清纯| 国产乱人伦偷精品视频观看| 国产丝袜无码一区二区| 久久精品成人免费片| 欧美日韩视频在线观看高清| 亚洲精品视频中文字| 偷拍农村老熟妇XXXXX7视频| 亚洲精品自有码中文字| 小鲜肉CHINA飞机直男| 国产亚洲av美女网站| 无码精品国产aa精品| 黄大片视频在线观看| 免费特级婬片欧美高清图片| 99re热精品免费视频| 国产极品白嫩精品月间禁欲| 亚洲日本在线中文字幕dvd| 制服丝袜+国产精品+中文字幕| 在线播放国产高清大学生 | 人妻久久久久久区二| 色呦呦免费在线| 丁香花五月天激情AV| 亚洲久久超碰无码色中文字幕| 公车全黄h全肉短篇公车之狼| 国产福利在线看| 日本一区二区视频在线观看狼人 | 成人福利av在线| 国产精品丝袜在自线拍| 在线视频电影| 久久国产精品人麻豆电影| 亚洲无码影院能看性爱视频的网站| 婷婷五月天社区在线观看| 国产特黄大片美女精品| 办公室少妇不带套| 国产性猛交╳xxx乱大交| 中文无码精品一区二区三区在线| 国产亚洲一区二区在线播放| 国产精品原创巨作?v女教师 | 日韩欧美中文字幕无乱码| 尤物yw193can在线视频| 国产3p交换在线观看| 凹凸人妻人人澡人人添| 粉色视频免费高清下载观看| 亚洲午夜国产精品久久| 久久久久国产亚洲一区| 九一视频免费版污| 亚洲综合精品一区二区三区中文| 国产三级片直播在线观看| 精品自拍偷拍一区二区| 成人毛片在线免费在线观看 | 九九精品视频看久久| h片网站永久免费| 亚洲一区二区三区福利| 午夜亚洲国产福利| 手玩护士睡老师勾搭女下属| 国产成人av在线亚洲天堂在线观看| 日韩无码综合| 精品国产精品亚洲| 欧美日韩欧美日韩在线| 亚洲 欧美 另类中文字幕| 亚洲Va中文字幕久久无码一区| 国产黄色免费二级片i | 日韩射第一页| 免费一级aα无码看片| 国产黄色免费二级片i| 亚洲欧洲日韩在线成人网| 伊人精品久久中文字幕| 日本免费成人综合| 卡通动漫亚洲日韩国产专区| 牛牛天天人人综合影院| 亚洲色中文字幕在线播放囯产免费 | 成人免费A级毛片无码片2022| 巜交换做爰2H无删减动漫| 精品一区二区黄色性视频 | av无码中文字幕不卡一| 一本大道无码中文字幕| 免费AV片在线观看播放器| 国产欧美日韩第一章午夜在线| 国产精品欧美久久久久| 欧美熟妇精品录像一级视品| 免费特级婬片欧美高清图片| 美女楼主别让男的用鸡巴操| 羞羞色院91网站| 草莓视频懂你更多破解版| 国产成人在线观看不卡| 泽艺影城欧美三级在线| 欧洲一区二区三区网站| 欧美日韩亚洲一区二区在线| 三级欧美天堂网| 日韩国产欧美三区四区| 日韩午夜男女爽爽爽免费观看影院| 日韩一区二区三区电影在线观看| 无码精品一区二区在线| 在线播放日韩一区| 国产精品成人黄色av| 好好的日com欧美| 日韩人妻丁香久久| 伊人久久综在合线视频| 超碰在线观看免费| 积积桶肤肤的免费软件大全一个| 国产爆乳美女呻吟娇喘图片 | 永久免费播放成人在线视频| 国产偷窥熟女高潮视频| 国内精品自线一区二区三区不卡| 人妻豐滿熟婦AV無碼區動漫| 精品自拍偷拍一区二区| 亚洲综合缴婷婷六月丁| 国产乱子伦一区二区三区视频播放 | 色婷婷影院一二三区| av午夜在线观看| 了解最新免费视频精品一区二区| 182tv.午夜在线播放观看| 国产户外露出视频长期的| 呦呦在现视频导航| 国产自娱免费一区| 中文字幕无码一二三| 野花日本hd免费完整版高清版6| 国产精品JⅠZZ视频| 精品高清三级国产| 欧美一级特黄一片免费| 亚洲av之男人的天堂网站| 中国无码在线看片| 午夜性色一区二区三区不卡视频| 成人18视频在线观看| 国产 中文字幕 在线| 亚洲乱码中文字幕精品久久| 美女被日一区二区| 女人被cao视频在线观看| 色欲av不卡在线观看| 欧美熟妇精品录像一级视品| 国外三级视频在线观看| 国产高清在线一区二区| 丰满少妇弄高潮了 www| 女生扒开下面让男人捅 | 亚洲AV永久无码嗯嗯啊在线| 亚洲无码精品色午夜果冻不卡| 亚洲欧美日韩春色一区| 午夜精品v无码大片在线观看| 樱花草在线社区www中国中文| 国产美女久久精品香蕉| 黄色片视频网站免费| 男生女生一起怼怼怼| 亚洲最多视频网址在线观看| 久久无码中文字幕久婷婷| 久久中文日字乱码| 七七七无码影院在线观看 | r级无码视频在线观看| 视频一区欧美亚洲| 国产成+人+综合+亚洲专区| 国产黄片Ha一区二区三区| 中國歐美日韓一區二區三區| 欧美性猛少妇免费xxxxx| 亚洲日韩第三十六页| 日本69日视频在线观看| 亚洲高清视频在线无码视频| 亚洲A级成人无码网站| 女同人妻のAV女同| 亚洲Av无码国产一区二区三区| 亚洲国产成人超?在线播放| 国产精品JⅠZZ视频| 玖玖资源免费国产在线观看互动交流| a级片无码在线免费看| 99久久精品国产精油按摩店| 抽、插免费观看久久av网| 久久国产99欧美| 亚洲黄片毛片视频| 手机亚洲欧美在线播放视频| 97在线视频免费人妻| 成人影院在线观看视频 | 97se亚洲国产综合| 最新中文字幕免费视频了| 九九在钱免费观看视频| 一区二区三区四区五区自拍| 中文字幕乱码的应用场景| 日本一区二区三区成人高清视频 | 2021国产黄色精品综合| 日本高清在线播放| 丰满的少妇XXXXX人妻| 日韩午夜福利麻豆?v无码精品一区| 老师你下面太紧了拔不出来| 中文字幕三级理论影院| 永久免费在线看a片视频| 黄色成年视频| 暖暖视频 免费 日本社区| 亚洲三级无码精品| 中文字幕一区二区在线视频关键 | 欧美另类极品videosbesr| 久久538无码一区| 三级日本韩国欧美黄色| 免费插鸡巴强奸视频网站免费| 久久久亚洲精品高潮抽搐 | 亚洲午夜精品一区二区三区免费视频 | 午夜在线欧美曰韩精品影视| 日本丰满熟妇vide0sse| 亚洲精品一区二区国产精品| 亚洲色图在线观看网站| 久久精品免费视频222| 秋霞伦理在线观看| 三级欧美天堂网| 精品99又大又爽又粗少妇毛片| 手机在线成人av免费视频播放| 亚洲电影黄色一级片| 日韓成人免費視頻播放| 久草av电影在线观看| 亚洲欧美一区二区成人精品| 国产成人无码精品色欲天香 | 欧美中文一区在线| 国产精品午夜福利免| 欧美国产99精品色综合久久成人| 国产三级精品欧美| 特级黄片特级毛片| 丰满巨臀大屁股bbw| 人人在线视频| 久久精品国产日韩不卡| 日本黄色免费在线观看视频| 国产又粗又猛又爽又黄黑人| 多毛bgmbgmbgm胖在线| 日韩精品自拍视频1页在线观看网站| 日本红怡院亚洲红怡院最新| 天堂色妞丁香婷婷久久久| 毛片网站观看| 国产AⅤ无码专区亚洲A∨综合网| 成人激情性色av毛片网站| 免费无码一区二区三区A片蜜臀| 国产激情久久久久影院蜜桃AV| 97人妻起碰免费公开| 91东航翘臀女神在线观看有码| 欧美精品福利视频一区午夜成人| 六月婷婷伊人精品| 中文字幕福利一道本| 亚洲午夜精品久久久久久成年| 色欲av综合av在线av老妇人| xxxx色视频在线观看免费app| 偷偷要偷偷鲁影院| 亚洲精品国产精品美女丝袜| 97无码东京热特黄发布| 成人免费A级毛片无码片2022| 高清无码不卡了av伊人五月| y成人网网站青青草综合| 中出内射颜射骚妇| 国产亚洲成a∨人片在线观嫩草| 精品丰满人妻一二三区无码| 久久无码高潮喷水免费看| 无遮羞18禁黄漫网站免费 | 国产欧美一区二区三区视频在线观看| 欧美熟妇精品录像一级视品| 美脚丝袜国产精品超薄| 人妻av人人澡人人爽人人夜夜| 成人免费免播放器视频| 亚洲欧美自拍另类卡通图区 | 被各种陌生人np调教灌尿| 日日碰狠狠添天天爽无码视频| 亚洲国产成人av影片在线| av在线无码专区一区| 亚欧洲日本在线观看| 国产综合午夜三级在线| 尤物yw193can在线视频| 在线视频国语福利| 国产一级特黄大片亚洲黄色一级片| 国内乱码精品一区二区| 久久伊人午夜寂寞影院| 欧美一级片内射美女少妇| 国产美女口爆吞精普通话朝夕| 亚洲午夜国产精品久久| 免费裸体黄网站18禁免费| 麻豆亚洲一区在线观看免费人成视频色| A你毛片视频免费看| 国产人成午夜电影免费观看| 古代级a毛片免费观看中字| 久久av性生活片| 2019精品无码不卡每| 在线观看精品欧美一区| 国产高清不卡一二三区#| 啪啪91免费视频| 亚洲黄片毛片视频| 朋友年轻的继坶6| 国产情侣在线看| 日韩精品一区二区?v在线| 欧美视频国产精品| 国产v日韩v欧美v| 久久久久亚洲AⅤ成人一二三区| 亚洲国产内射精品喷| 韩国理伦片在线观看免费| 久久久久免费一级视频| 青柠视频手机在线高清观看| 国产一级婬片AA片免费水多多| 丁香花五月天激情AV| 午夜成年奭片视频在线观看| 欧美理论片免费看| 亚洲免费无码在线| 亚洲欧洲无码av在线播放| 欧美高清精品一区二区不卡| 2021久久老司机福利精品网| 日韩精品一区二区三区黑人| 国内久经典aaaaa片| 东京热中文aⅴ专区| 久久电影三级片| 亚洲乱码中文字幕精品久久| www.亚洲成人免费| 7x7x7x人成免费观学生视频| 亚洲狠狠久久综合一区7777| 91免费视视频在线观看婷婷激情网站 | 老鸭窝日韩一级一区二区| 大香蕉久草视频在线| 欧美亚洲综合成人网| 久久久久国产精品不卡| 无码人妻精品一区二区三区性色| 国产一级137片内射| 黄色视频国产免费观看视频| 人人在线视频| 乱子伦国产对白精彩在线播放| 日本一区二区不卡精品| 无码日本精品一区二区三区视频| 老鸭窝日韩一级一区二区| 最近制服丝袜中文字幕在线| 亚洲一区二区成人精品| 亚洲国产精品资源| 国产成AV人片在线观看福利| 欧美性爱亚洲精品| 色色wc无码夜夜| 老熟妇乱子伦中文观看| 日本东京热一区| 中国一级淫片| 久久99精品久久久秒播| 尤物永久免费av无码网站| 久久久久人妻一区精品色奶水| 国产a级一级久久真人片| 亚洲第一区二区av|